Matches in SemOpenAlex for { <https://semopenalex.org/work/W3137304821> ?p ?o ?g. }
- W3137304821 endingPage "055032" @default.
- W3137304821 startingPage "055032" @default.
- W3137304821 abstract "Abstract Reliable load time series forecasting plays an important role in guaranteeing the safe and stable operation of modern power system. Due to the volatility and randomness of electricity demand, the conventional forecasting method may fail to effectively capture the dynamic change of load curves. To satisfy this practical necessity, the goal of this paper is set to develop a practical machine learning model based on feature selection and parameter optimization for short-term load prediction. In the proposed model, the ensemble empirical mode decomposition is used to divide the original loads into a sequence of relatively simple subcomponents; for each subcomponent, the support vector machine is chosen as the basic predictor where the real-valued cooperation search algorithm (CSA) is used to seek the best model hyperparameters, while the binary-valued CSA is set as the feature selection tool to determine the candidate input variables; finally, the aggregation of all the submodules’ outputs forms the final forecasting result. The presented method is assessed by short-term load data from four provincial-grid dispatching centers in China. The experiments demonstrate that the proposed model can provide better results than several conventional models in short-term load prediction, while the emerging CSA method is an effective tool to determine the parameter combinations of machine learning method." @default.
- W3137304821 created "2021-03-29" @default.
- W3137304821 creator A5018542086 @default.
- W3137304821 creator A5047762279 @default.
- W3137304821 creator A5064346308 @default.
- W3137304821 creator A5071367236 @default.
- W3137304821 creator A5079367813 @default.
- W3137304821 date "2021-05-01" @default.
- W3137304821 modified "2023-09-26" @default.
- W3137304821 title "Short-term electricity load time series prediction by machine learning model via feature selection and parameter optimization using hybrid cooperation search algorithm" @default.
- W3137304821 cites W1589475696 @default.
- W3137304821 cites W1619614355 @default.
- W3137304821 cites W1864468960 @default.
- W3137304821 cites W1965370697 @default.
- W3137304821 cites W1968378534 @default.
- W3137304821 cites W1971926909 @default.
- W3137304821 cites W1974330875 @default.
- W3137304821 cites W1999898807 @default.
- W3137304821 cites W2014051387 @default.
- W3137304821 cites W2018908206 @default.
- W3137304821 cites W2046794274 @default.
- W3137304821 cites W2050683094 @default.
- W3137304821 cites W2055412520 @default.
- W3137304821 cites W2057018326 @default.
- W3137304821 cites W2064539496 @default.
- W3137304821 cites W2067183857 @default.
- W3137304821 cites W2079541639 @default.
- W3137304821 cites W2101156118 @default.
- W3137304821 cites W2290873233 @default.
- W3137304821 cites W2565460516 @default.
- W3137304821 cites W2566512888 @default.
- W3137304821 cites W2782749104 @default.
- W3137304821 cites W2783443666 @default.
- W3137304821 cites W2792253101 @default.
- W3137304821 cites W2799615061 @default.
- W3137304821 cites W2807466282 @default.
- W3137304821 cites W2883013658 @default.
- W3137304821 cites W2885097378 @default.
- W3137304821 cites W2888163123 @default.
- W3137304821 cites W2899080806 @default.
- W3137304821 cites W2901964425 @default.
- W3137304821 cites W2913801035 @default.
- W3137304821 cites W2914823774 @default.
- W3137304821 cites W2916454785 @default.
- W3137304821 cites W2922267326 @default.
- W3137304821 cites W2946775509 @default.
- W3137304821 cites W2946927971 @default.
- W3137304821 cites W2953144469 @default.
- W3137304821 cites W2955008174 @default.
- W3137304821 cites W2973582255 @default.
- W3137304821 cites W2973960501 @default.
- W3137304821 cites W2985650650 @default.
- W3137304821 cites W2991316804 @default.
- W3137304821 cites W2991555241 @default.
- W3137304821 cites W2991743256 @default.
- W3137304821 cites W3000276710 @default.
- W3137304821 cites W3003604602 @default.
- W3137304821 cites W3006926377 @default.
- W3137304821 cites W3011781994 @default.
- W3137304821 cites W3018096782 @default.
- W3137304821 cites W3027126966 @default.
- W3137304821 cites W3027515891 @default.
- W3137304821 cites W3027894718 @default.
- W3137304821 cites W3033067191 @default.
- W3137304821 cites W3033338669 @default.
- W3137304821 cites W3033652527 @default.
- W3137304821 cites W3035595432 @default.
- W3137304821 cites W3039101609 @default.
- W3137304821 cites W3083318754 @default.
- W3137304821 cites W3087325074 @default.
- W3137304821 cites W3089799272 @default.
- W3137304821 cites W3093494023 @default.
- W3137304821 cites W3094193625 @default.
- W3137304821 cites W3094920651 @default.
- W3137304821 cites W3117645847 @default.
- W3137304821 cites W3118625182 @default.
- W3137304821 cites W3119900602 @default.
- W3137304821 cites W3128531940 @default.
- W3137304821 doi "https://doi.org/10.1088/1748-9326/abeeb1" @default.
- W3137304821 hasPublicationYear "2021" @default.
- W3137304821 type Work @default.
- W3137304821 sameAs 3137304821 @default.
- W3137304821 citedByCount "18" @default.
- W3137304821 countsByYear W31373048212021 @default.
- W3137304821 countsByYear W31373048212022 @default.
- W3137304821 countsByYear W31373048212023 @default.
- W3137304821 crossrefType "journal-article" @default.
- W3137304821 hasAuthorship W3137304821A5018542086 @default.
- W3137304821 hasAuthorship W3137304821A5047762279 @default.
- W3137304821 hasAuthorship W3137304821A5064346308 @default.
- W3137304821 hasAuthorship W3137304821A5071367236 @default.
- W3137304821 hasAuthorship W3137304821A5079367813 @default.
- W3137304821 hasBestOaLocation W31373048211 @default.
- W3137304821 hasConcept C10485038 @default.
- W3137304821 hasConcept C105795698 @default.
- W3137304821 hasConcept C11413529 @default.
- W3137304821 hasConcept C119857082 @default.
- W3137304821 hasConcept C121332964 @default.