Matches in SemOpenAlex for { <https://semopenalex.org/work/W3137308317> ?p ?o ?g. }
- W3137308317 endingPage "2870" @default.
- W3137308317 startingPage "2870" @default.
- W3137308317 abstract "Nowadays, material science and stress characteristics are crucial in the field of jet engines. There are methods for fatigue life, stress, and temperature prediction; however, the conventional methods are ineffective and time-consuming. The article is devoted to the research in the field of application of the numerical methods in order to develop an innovative methodology for the temperature fields prediction based on the integration of the finite element methods and artificial neural networks, which leads to the creation of the novel methodology for the temperature field prediction. The proposed methodology was applied to the temperature field prediction on the surface blades of the experimental iSTC-21v jet engine turbine. The results confirmed the correctness of the new methodology, which is able to predict temperatures at the specific points on the surface of a turbine blade immediately. Moreover, the proposed methodology is able to predict temperatures at specific points on the turbine blade during the engine runs, even for the multiple operational regimes of the jet engine. Thanks to this new unique methodology, it is possible to increase the reliability and lifetime of turbines and hot parts of any jet engine and to reduce not only the maintenance but also the research and development costs due to the significantly lower time demands. The main advantage is to predict temperature fields much faster in comparison to the methods available today (computational fluid dynamics (CFD), etc.), and the major aim of the proposed article is to predict temperatures using a neural network. Apart from the above-mentioned advantages, the article’s main purpose is devoted to the artificial neural networks, which have been until now used for many applications, but in our case, the neural network was for the first time applied for the temperature field prediction on the turbine blade." @default.
- W3137308317 created "2021-03-29" @default.
- W3137308317 creator A5037882850 @default.
- W3137308317 creator A5053491336 @default.
- W3137308317 creator A5078996935 @default.
- W3137308317 date "2021-03-23" @default.
- W3137308317 modified "2023-10-17" @default.
- W3137308317 title "Turbine Blade Temperature Field Prediction Using the Numerical Methods" @default.
- W3137308317 cites W1966514153 @default.
- W3137308317 cites W1974799915 @default.
- W3137308317 cites W1992597740 @default.
- W3137308317 cites W2071220135 @default.
- W3137308317 cites W2083098264 @default.
- W3137308317 cites W2243332436 @default.
- W3137308317 cites W2294374736 @default.
- W3137308317 cites W2410376658 @default.
- W3137308317 cites W2562980902 @default.
- W3137308317 cites W2586402230 @default.
- W3137308317 cites W2591623346 @default.
- W3137308317 cites W2604396233 @default.
- W3137308317 cites W2613496373 @default.
- W3137308317 cites W2613918146 @default.
- W3137308317 cites W2672330039 @default.
- W3137308317 cites W2800895560 @default.
- W3137308317 cites W2805764726 @default.
- W3137308317 cites W2885839277 @default.
- W3137308317 cites W2894015370 @default.
- W3137308317 cites W2898242572 @default.
- W3137308317 cites W2900380997 @default.
- W3137308317 cites W2908206819 @default.
- W3137308317 cites W2944140915 @default.
- W3137308317 cites W2948832460 @default.
- W3137308317 cites W2951480061 @default.
- W3137308317 cites W2952685330 @default.
- W3137308317 cites W2965459360 @default.
- W3137308317 cites W2980937106 @default.
- W3137308317 cites W2982493260 @default.
- W3137308317 cites W2983755991 @default.
- W3137308317 cites W2999024589 @default.
- W3137308317 cites W3006321716 @default.
- W3137308317 cites W3033714258 @default.
- W3137308317 cites W3039043974 @default.
- W3137308317 cites W3043101822 @default.
- W3137308317 cites W3093535117 @default.
- W3137308317 cites W3097432472 @default.
- W3137308317 cites W3107989281 @default.
- W3137308317 cites W3110137120 @default.
- W3137308317 cites W3112819583 @default.
- W3137308317 cites W3118767440 @default.
- W3137308317 cites W3119444681 @default.
- W3137308317 cites W3119463335 @default.
- W3137308317 cites W3123141844 @default.
- W3137308317 cites W3125406478 @default.
- W3137308317 cites W3209406225 @default.
- W3137308317 doi "https://doi.org/10.3390/app11062870" @default.
- W3137308317 hasPublicationYear "2021" @default.
- W3137308317 type Work @default.
- W3137308317 sameAs 3137308317 @default.
- W3137308317 citedByCount "3" @default.
- W3137308317 countsByYear W31373083172022 @default.
- W3137308317 countsByYear W31373083172023 @default.
- W3137308317 crossrefType "journal-article" @default.
- W3137308317 hasAuthorship W3137308317A5037882850 @default.
- W3137308317 hasAuthorship W3137308317A5053491336 @default.
- W3137308317 hasAuthorship W3137308317A5078996935 @default.
- W3137308317 hasBestOaLocation W31373083171 @default.
- W3137308317 hasConcept C11413529 @default.
- W3137308317 hasConcept C119857082 @default.
- W3137308317 hasConcept C119947313 @default.
- W3137308317 hasConcept C121332964 @default.
- W3137308317 hasConcept C127413603 @default.
- W3137308317 hasConcept C135628077 @default.
- W3137308317 hasConcept C146978453 @default.
- W3137308317 hasConcept C163258240 @default.
- W3137308317 hasConcept C1633027 @default.
- W3137308317 hasConcept C202444582 @default.
- W3137308317 hasConcept C20381859 @default.
- W3137308317 hasConcept C2776132848 @default.
- W3137308317 hasConcept C2778449969 @default.
- W3137308317 hasConcept C2985438705 @default.
- W3137308317 hasConcept C33923547 @default.
- W3137308317 hasConcept C39643299 @default.
- W3137308317 hasConcept C41008148 @default.
- W3137308317 hasConcept C43214815 @default.
- W3137308317 hasConcept C50644808 @default.
- W3137308317 hasConcept C55439883 @default.
- W3137308317 hasConcept C62520636 @default.
- W3137308317 hasConcept C66938386 @default.
- W3137308317 hasConcept C78519656 @default.
- W3137308317 hasConcept C9652623 @default.
- W3137308317 hasConceptScore W3137308317C11413529 @default.
- W3137308317 hasConceptScore W3137308317C119857082 @default.
- W3137308317 hasConceptScore W3137308317C119947313 @default.
- W3137308317 hasConceptScore W3137308317C121332964 @default.
- W3137308317 hasConceptScore W3137308317C127413603 @default.
- W3137308317 hasConceptScore W3137308317C135628077 @default.
- W3137308317 hasConceptScore W3137308317C146978453 @default.
- W3137308317 hasConceptScore W3137308317C163258240 @default.