Matches in SemOpenAlex for { <https://semopenalex.org/work/W3137352450> ?p ?o ?g. }
- W3137352450 abstract "Abstract Machine learning (ML) tools are able to learn relationships between the inputs and outputs of large complex systems directly from data. However for time-varying systems, the predictive capabilities of ML tools degrade if the systems are no longer accurately represented by the data with which the ML models were trained. For complex systems, re-training is only possible if the changes are slow relative to the rate at which large numbers of new input-output training data can be non-invasively recorded. In this work, we present an approach to deep learning for time-varying systems which does not require re-training. Our approach is to include adaptive feedback in the architecture of deep generative convolutional neural networks (CNN). The feedback is based only on available system output measurements and is applied in the encoded low-dimensional dense layers of the encoder-decoder CNNs. Our approach is inspired by biological systems in which separate groups of neurons interact and are controlled and synchronized by external feedbacks. We demonstrate this approach by developing an inverse model of a complex charged particle accelerator system, mapping output beam measurements to input beam distributions, while both the accelerator components and the unknown input beam distribution vary rapidly with time. We demonstrate our methods on experimental measurements of the input and output beam distributions of the HiRES ultra-fast electron diffraction (UED) beam line at Lawrence Berkeley National Laboratory. Our method can be successfully used to aid both physics and ML-based surrogate online models to provide non-invasive beam diagnostics. We also demonstrate our method for automatically tracking the time varying quantum efficiency map of a particle accelerator’s photocathode." @default.
- W3137352450 created "2021-03-29" @default.
- W3137352450 creator A5009374674 @default.
- W3137352450 creator A5029728208 @default.
- W3137352450 creator A5050149150 @default.
- W3137352450 creator A5066402368 @default.
- W3137352450 date "2021-04-06" @default.
- W3137352450 modified "2023-09-23" @default.
- W3137352450 title "Adaptive Deep Learning for Time-Varying Systems With Hidden Parameters: Predicting Changing Input Beam Distributions of Compact Particle Accelerators" @default.
- W3137352450 cites W1984371888 @default.
- W3137352450 cites W1998995293 @default.
- W3137352450 cites W2038550926 @default.
- W3137352450 cites W2064575216 @default.
- W3137352450 cites W2133665775 @default.
- W3137352450 cites W2184214022 @default.
- W3137352450 cites W2294798173 @default.
- W3137352450 cites W2337082154 @default.
- W3137352450 cites W2343462019 @default.
- W3137352450 cites W2345094052 @default.
- W3137352450 cites W2405530275 @default.
- W3137352450 cites W2518282888 @default.
- W3137352450 cites W2737255979 @default.
- W3137352450 cites W2770326163 @default.
- W3137352450 cites W2804995754 @default.
- W3137352450 cites W2809986801 @default.
- W3137352450 cites W2883445762 @default.
- W3137352450 cites W2884430236 @default.
- W3137352450 cites W2884949476 @default.
- W3137352450 cites W2891620605 @default.
- W3137352450 cites W2901973743 @default.
- W3137352450 cites W2910059937 @default.
- W3137352450 cites W2922802436 @default.
- W3137352450 cites W2923545799 @default.
- W3137352450 cites W2925112248 @default.
- W3137352450 cites W2940006083 @default.
- W3137352450 cites W2942512713 @default.
- W3137352450 cites W2946570353 @default.
- W3137352450 cites W2971304057 @default.
- W3137352450 cites W2973085194 @default.
- W3137352450 cites W2998647565 @default.
- W3137352450 cites W3005623130 @default.
- W3137352450 cites W3006249533 @default.
- W3137352450 cites W3012727703 @default.
- W3137352450 cites W3016229056 @default.
- W3137352450 cites W3022886304 @default.
- W3137352450 cites W3025790685 @default.
- W3137352450 cites W3048114840 @default.
- W3137352450 cites W3049675384 @default.
- W3137352450 cites W3081947842 @default.
- W3137352450 cites W3084879937 @default.
- W3137352450 cites W3089790292 @default.
- W3137352450 cites W3094354705 @default.
- W3137352450 cites W3097725868 @default.
- W3137352450 cites W3099667794 @default.
- W3137352450 cites W3103790930 @default.
- W3137352450 cites W3104640931 @default.
- W3137352450 cites W3105109089 @default.
- W3137352450 cites W3123689456 @default.
- W3137352450 cites W3127407323 @default.
- W3137352450 cites W3127511135 @default.
- W3137352450 cites W3131962740 @default.
- W3137352450 cites W3133622933 @default.
- W3137352450 doi "https://doi.org/10.21203/rs.3.rs-373311/v1" @default.
- W3137352450 hasPublicationYear "2021" @default.
- W3137352450 type Work @default.
- W3137352450 sameAs 3137352450 @default.
- W3137352450 citedByCount "3" @default.
- W3137352450 countsByYear W31373524502021 @default.
- W3137352450 crossrefType "posted-content" @default.
- W3137352450 hasAuthorship W3137352450A5009374674 @default.
- W3137352450 hasAuthorship W3137352450A5029728208 @default.
- W3137352450 hasAuthorship W3137352450A5050149150 @default.
- W3137352450 hasAuthorship W3137352450A5066402368 @default.
- W3137352450 hasBestOaLocation W31373524501 @default.
- W3137352450 hasConcept C108583219 @default.
- W3137352450 hasConcept C120665830 @default.
- W3137352450 hasConcept C121332964 @default.
- W3137352450 hasConcept C154945302 @default.
- W3137352450 hasConcept C168834538 @default.
- W3137352450 hasConcept C41008148 @default.
- W3137352450 hasConcept C50644808 @default.
- W3137352450 hasConcept C81363708 @default.
- W3137352450 hasConceptScore W3137352450C108583219 @default.
- W3137352450 hasConceptScore W3137352450C120665830 @default.
- W3137352450 hasConceptScore W3137352450C121332964 @default.
- W3137352450 hasConceptScore W3137352450C154945302 @default.
- W3137352450 hasConceptScore W3137352450C168834538 @default.
- W3137352450 hasConceptScore W3137352450C41008148 @default.
- W3137352450 hasConceptScore W3137352450C50644808 @default.
- W3137352450 hasConceptScore W3137352450C81363708 @default.
- W3137352450 hasLocation W31373524501 @default.
- W3137352450 hasLocation W31373524502 @default.
- W3137352450 hasOpenAccess W3137352450 @default.
- W3137352450 hasPrimaryLocation W31373524501 @default.
- W3137352450 hasRelatedWork W2731899572 @default.
- W3137352450 hasRelatedWork W2999805992 @default.
- W3137352450 hasRelatedWork W3011074480 @default.
- W3137352450 hasRelatedWork W3116150086 @default.
- W3137352450 hasRelatedWork W3133861977 @default.
- W3137352450 hasRelatedWork W3166467183 @default.