Matches in SemOpenAlex for { <https://semopenalex.org/work/W3137449743> ?p ?o ?g. }
- W3137449743 endingPage "2269" @default.
- W3137449743 startingPage "2269" @default.
- W3137449743 abstract "In the last few decades, photovoltaics have contributed deeply to electric power networks due to their economic and technical benefits. Typically, photovoltaic systems are widely used and implemented in many fields like electric vehicles, homes, and satellites. One of the biggest problems that face the relatability and stability of the electrical power system is the loss of one of the photovoltaic modules. In other words, fault detection methods designed for photovoltaic systems are required to not only diagnose but also clear such undesirable faults to improve the reliability and efficiency of solar farms. Accordingly, the loss of any module leads to a decrease in the efficiency of the overall system. To avoid this issue, this paper proposes an optimum solution for fault finding, tracking, and clearing in an effective manner. Specifically, this proposed approach is done by developing one of the most promising techniques of artificial intelligence called the adaptive neuro-fuzzy inference system. The proposed fault detection approach is based on associating the actual measured values of current and voltage with respect to the trained historical values for this parameter while considering the ambient changes in conditions including irradiation and temperature. Two adaptive neuro-fuzzy inference system-based controllers are proposed: (1) the first one is utilized to detect the faulted string and (2) the other one is utilized for detecting the exact faulted group in the photovoltaic array. The utilized model was installed using a configuration of 4 × 4 photovoltaic arrays that are connected through several switches, besides four ammeters and four voltmeters. This study is implemented using MATLAB/Simulink and the simulation results are presented to show the validity of the proposed technique. The simulation results demonstrate the innovation of this study while proving the effective and high performance of the proposed adaptive neuro-fuzzy inference system-based approach in fault tracking, detection, clearing, and rearrangement for practical photovoltaic systems." @default.
- W3137449743 created "2021-03-29" @default.
- W3137449743 creator A5057152540 @default.
- W3137449743 creator A5065700634 @default.
- W3137449743 creator A5074737100 @default.
- W3137449743 creator A5075221999 @default.
- W3137449743 creator A5086406029 @default.
- W3137449743 creator A5090707482 @default.
- W3137449743 date "2021-03-24" @default.
- W3137449743 modified "2023-10-18" @default.
- W3137449743 title "Proposed ANFIS Based Approach for Fault Tracking, Detection, Clearing and Rearrangement for Photovoltaic System" @default.
- W3137449743 cites W1260441421 @default.
- W3137449743 cites W1996255366 @default.
- W3137449743 cites W2010599085 @default.
- W3137449743 cites W2019207321 @default.
- W3137449743 cites W2043077493 @default.
- W3137449743 cites W2092669910 @default.
- W3137449743 cites W2145804350 @default.
- W3137449743 cites W2471159162 @default.
- W3137449743 cites W2610354682 @default.
- W3137449743 cites W2923095042 @default.
- W3137449743 cites W2942885925 @default.
- W3137449743 cites W3005609417 @default.
- W3137449743 cites W3028377415 @default.
- W3137449743 cites W3080223094 @default.
- W3137449743 cites W3092849296 @default.
- W3137449743 cites W3111016793 @default.
- W3137449743 cites W3118511128 @default.
- W3137449743 cites W3118786595 @default.
- W3137449743 cites W3124985944 @default.
- W3137449743 cites W3125534608 @default.
- W3137449743 cites W3126304977 @default.
- W3137449743 cites W3127151282 @default.
- W3137449743 cites W3127392409 @default.
- W3137449743 cites W3127713043 @default.
- W3137449743 cites W3133138473 @default.
- W3137449743 cites W3133548648 @default.
- W3137449743 cites W3135825269 @default.
- W3137449743 cites W3135884034 @default.
- W3137449743 cites W3137735763 @default.
- W3137449743 doi "https://doi.org/10.3390/s21072269" @default.
- W3137449743 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8037194" @default.
- W3137449743 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33804955" @default.
- W3137449743 hasPublicationYear "2021" @default.
- W3137449743 type Work @default.
- W3137449743 sameAs 3137449743 @default.
- W3137449743 citedByCount "38" @default.
- W3137449743 countsByYear W31374497432021 @default.
- W3137449743 countsByYear W31374497432022 @default.
- W3137449743 countsByYear W31374497432023 @default.
- W3137449743 crossrefType "journal-article" @default.
- W3137449743 hasAuthorship W3137449743A5057152540 @default.
- W3137449743 hasAuthorship W3137449743A5065700634 @default.
- W3137449743 hasAuthorship W3137449743A5074737100 @default.
- W3137449743 hasAuthorship W3137449743A5075221999 @default.
- W3137449743 hasAuthorship W3137449743A5086406029 @default.
- W3137449743 hasAuthorship W3137449743A5090707482 @default.
- W3137449743 hasBestOaLocation W31374497431 @default.
- W3137449743 hasConcept C11190779 @default.
- W3137449743 hasConcept C119599485 @default.
- W3137449743 hasConcept C127313418 @default.
- W3137449743 hasConcept C127413603 @default.
- W3137449743 hasConcept C133731056 @default.
- W3137449743 hasConcept C142362112 @default.
- W3137449743 hasConcept C152745839 @default.
- W3137449743 hasConcept C153349607 @default.
- W3137449743 hasConcept C154945302 @default.
- W3137449743 hasConcept C165205528 @default.
- W3137449743 hasConcept C165801399 @default.
- W3137449743 hasConcept C172707124 @default.
- W3137449743 hasConcept C175551986 @default.
- W3137449743 hasConcept C186108316 @default.
- W3137449743 hasConcept C195975749 @default.
- W3137449743 hasConcept C200601418 @default.
- W3137449743 hasConcept C2775924081 @default.
- W3137449743 hasConcept C2777767291 @default.
- W3137449743 hasConcept C36139824 @default.
- W3137449743 hasConcept C41008148 @default.
- W3137449743 hasConcept C41291067 @default.
- W3137449743 hasConcept C47446073 @default.
- W3137449743 hasConcept C542589376 @default.
- W3137449743 hasConcept C58166 @default.
- W3137449743 hasConceptScore W3137449743C11190779 @default.
- W3137449743 hasConceptScore W3137449743C119599485 @default.
- W3137449743 hasConceptScore W3137449743C127313418 @default.
- W3137449743 hasConceptScore W3137449743C127413603 @default.
- W3137449743 hasConceptScore W3137449743C133731056 @default.
- W3137449743 hasConceptScore W3137449743C142362112 @default.
- W3137449743 hasConceptScore W3137449743C152745839 @default.
- W3137449743 hasConceptScore W3137449743C153349607 @default.
- W3137449743 hasConceptScore W3137449743C154945302 @default.
- W3137449743 hasConceptScore W3137449743C165205528 @default.
- W3137449743 hasConceptScore W3137449743C165801399 @default.
- W3137449743 hasConceptScore W3137449743C172707124 @default.
- W3137449743 hasConceptScore W3137449743C175551986 @default.
- W3137449743 hasConceptScore W3137449743C186108316 @default.
- W3137449743 hasConceptScore W3137449743C195975749 @default.
- W3137449743 hasConceptScore W3137449743C200601418 @default.