Matches in SemOpenAlex for { <https://semopenalex.org/work/W3137498088> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W3137498088 abstract "This thesis covers the topic ”Thinning and Turbulence in Aqueous Films”. Experimental studies in two-dimensional systems gained an increasing amount of attention during the last decade. Thin liquid films serve as paradigms of atmospheric convection, thermal convection in the Earth’s mantle or turbulence in magnetohydrodynamics. Recent research on colloids, interfaces and nanofluids lead to advances in the developtment of micro-mixers (lab-on-a-chip devices). In this project a detailed description of a thin film experiment with focus on the particular surface forces is presented. The impact of turbulence on the thinning of liquid films which are oriented parallel to the gravitational force is studied. An experimental setup was developed which permits the capturing of thin film interference patterns under controlled surface and atmospheric conditions. The measurement setup also serves as a prototype of a mixer on the basis of thermally induced turbulence in liquid thin films with thicknesses in the nanometer range. The convection is realized by placing a cooled copper rod in the center of the film. The temperature gradient between the rod and the atmosphere results in a density gradient in the liquid film, so that different buoyancies generate turbulence. In the work at hand the thermally driven convection is characterized by a newly developed algorithm, named Cluster Imaging Velocimetry (CIV). This routine determines the flow relevant vector fields (velocity and deformation). On the basis of these insights the flow in the experiment was investigated with respect to its mixing properties. The mixing characteristics were compared to theoretical models and mixing efficiency of the flow scheme calculated. The gravitationally driven thinning of the liquid film was analyzed under the influence of turbulence. Strong shear forces lead to the generation of ultra-thin domains which consist of Newton black film. Due to the exponential expansion of the thin areas and the efficient mixing, this two-phase flow rapidly turns into the convection of only ultra-thin film. This turbulence driven transition was observed and quantified for the first time. The existence of stable convection in liquid nanofilms was proven for the first time in the context of this work." @default.
- W3137498088 created "2021-03-29" @default.
- W3137498088 creator A5041353240 @default.
- W3137498088 date "2011-01-01" @default.
- W3137498088 modified "2023-09-28" @default.
- W3137498088 title "Thinning and turbulence in aqueous films" @default.
- W3137498088 cites W1997333793 @default.
- W3137498088 cites W2000447800 @default.
- W3137498088 cites W2083777953 @default.
- W3137498088 cites W2090431595 @default.
- W3137498088 hasPublicationYear "2011" @default.
- W3137498088 type Work @default.
- W3137498088 sameAs 3137498088 @default.
- W3137498088 citedByCount "0" @default.
- W3137498088 crossrefType "journal-article" @default.
- W3137498088 hasAuthorship W3137498088A5041353240 @default.
- W3137498088 hasConcept C10899652 @default.
- W3137498088 hasConcept C120665830 @default.
- W3137498088 hasConcept C121332964 @default.
- W3137498088 hasConcept C171250308 @default.
- W3137498088 hasConcept C19067145 @default.
- W3137498088 hasConcept C192562407 @default.
- W3137498088 hasConcept C196558001 @default.
- W3137498088 hasConcept C57879066 @default.
- W3137498088 hasConceptScore W3137498088C10899652 @default.
- W3137498088 hasConceptScore W3137498088C120665830 @default.
- W3137498088 hasConceptScore W3137498088C121332964 @default.
- W3137498088 hasConceptScore W3137498088C171250308 @default.
- W3137498088 hasConceptScore W3137498088C19067145 @default.
- W3137498088 hasConceptScore W3137498088C192562407 @default.
- W3137498088 hasConceptScore W3137498088C196558001 @default.
- W3137498088 hasConceptScore W3137498088C57879066 @default.
- W3137498088 hasLocation W31374980881 @default.
- W3137498088 hasOpenAccess W3137498088 @default.
- W3137498088 hasPrimaryLocation W31374980881 @default.
- W3137498088 hasRelatedWork W145154454 @default.
- W3137498088 hasRelatedWork W1968343367 @default.
- W3137498088 hasRelatedWork W2013619368 @default.
- W3137498088 hasRelatedWork W2028766030 @default.
- W3137498088 hasRelatedWork W2033082015 @default.
- W3137498088 hasRelatedWork W2040418203 @default.
- W3137498088 hasRelatedWork W2040784922 @default.
- W3137498088 hasRelatedWork W2044161245 @default.
- W3137498088 hasRelatedWork W2063681954 @default.
- W3137498088 hasRelatedWork W2072733481 @default.
- W3137498088 hasRelatedWork W2090383972 @default.
- W3137498088 hasRelatedWork W2092759204 @default.
- W3137498088 hasRelatedWork W2168140927 @default.
- W3137498088 hasRelatedWork W2237422942 @default.
- W3137498088 hasRelatedWork W2254688310 @default.
- W3137498088 hasRelatedWork W2411254647 @default.
- W3137498088 hasRelatedWork W2996978334 @default.
- W3137498088 hasRelatedWork W3120155162 @default.
- W3137498088 hasRelatedWork W3130185971 @default.
- W3137498088 hasRelatedWork W653138104 @default.
- W3137498088 isParatext "false" @default.
- W3137498088 isRetracted "false" @default.
- W3137498088 magId "3137498088" @default.
- W3137498088 workType "article" @default.