Matches in SemOpenAlex for { <https://semopenalex.org/work/W3137521204> ?p ?o ?g. }
- W3137521204 endingPage "106649" @default.
- W3137521204 startingPage "106649" @default.
- W3137521204 abstract "This paper presents the introduction, investigation, and critical assessment of three data-driven statistical residual-based time series methods for rotor fault detection and identification (FDI) in multicopters. A concise overview of statistical residual-based FDI methods is provided based on scalar (univariate) and vector (multivariate) stochastic time series models. The FDI methods employed in this study are based on identified response-only parametric scalar (univariate) and vector (multivariate) autoregressive (AR) representations of multicopter attitudes (time series), as the external excitation is non-observable, and their corresponding model residuals obtained under the considered healthy and faulty multicopter states. The comparative assessment of the effectiveness of three residual-based statistical FDI methods is presented in the face of external disturbances, namely three different levels of turbulence, and for different rotor fault scenarios. To the authors' best of knowledge, this is the first time that residual-based statistical time series methods are investigated and evaluated with respect to multicopter FDI. The unique characteristics of the presented methods are: (i) the data-driven stochastic identification of the multicopter dynamics under healthy and faulty rotor conditions is based only on the use of multicopter attitude signals, i.e. roll, pitch, and yaw, without the need to use additional aircraft states; (ii) there is no analytical modeling involved and the subsequent development of a stochastic multicopter FDI framework does not require knowledge of the controller effort to detect and classify rotor faults. The fault detection methods based on Vector AutoRegressive (VAR) models exhibit improved performance compared to their scalar counterparts, as indicated by lower false alarms and missed fault rates. In the case of rotor fault identification (classification), the methods that are based on scalar AR models exhibit reduced rotor fault classification accuracy, while the VAR-based methods outperform their scalar counterparts and can achieve a fault identification accuracy of up to 99.6%." @default.
- W3137521204 created "2021-03-29" @default.
- W3137521204 creator A5049199276 @default.
- W3137521204 creator A5050778106 @default.
- W3137521204 creator A5056620525 @default.
- W3137521204 creator A5066914476 @default.
- W3137521204 date "2021-05-01" @default.
- W3137521204 modified "2023-10-04" @default.
- W3137521204 title "Statistical residual-based time series methods for multicopter fault detection and identification" @default.
- W3137521204 cites W1964685771 @default.
- W3137521204 cites W1965875070 @default.
- W3137521204 cites W1977717137 @default.
- W3137521204 cites W1979610407 @default.
- W3137521204 cites W1984193447 @default.
- W3137521204 cites W1995328999 @default.
- W3137521204 cites W1998237045 @default.
- W3137521204 cites W2021608003 @default.
- W3137521204 cites W2024498077 @default.
- W3137521204 cites W2055006308 @default.
- W3137521204 cites W2055861714 @default.
- W3137521204 cites W2060540122 @default.
- W3137521204 cites W2075773492 @default.
- W3137521204 cites W2080447794 @default.
- W3137521204 cites W2105599317 @default.
- W3137521204 cites W2105720185 @default.
- W3137521204 cites W2110353513 @default.
- W3137521204 cites W2113288151 @default.
- W3137521204 cites W2126275662 @default.
- W3137521204 cites W2140391370 @default.
- W3137521204 cites W2167908488 @default.
- W3137521204 cites W2612221461 @default.
- W3137521204 cites W2775519428 @default.
- W3137521204 cites W2899591918 @default.
- W3137521204 cites W2931864960 @default.
- W3137521204 cites W2982558025 @default.
- W3137521204 cites W2995723969 @default.
- W3137521204 cites W3009481314 @default.
- W3137521204 doi "https://doi.org/10.1016/j.ast.2021.106649" @default.
- W3137521204 hasPublicationYear "2021" @default.
- W3137521204 type Work @default.
- W3137521204 sameAs 3137521204 @default.
- W3137521204 citedByCount "10" @default.
- W3137521204 countsByYear W31375212042021 @default.
- W3137521204 countsByYear W31375212042022 @default.
- W3137521204 countsByYear W31375212042023 @default.
- W3137521204 crossrefType "journal-article" @default.
- W3137521204 hasAuthorship W3137521204A5049199276 @default.
- W3137521204 hasAuthorship W3137521204A5050778106 @default.
- W3137521204 hasAuthorship W3137521204A5056620525 @default.
- W3137521204 hasAuthorship W3137521204A5066914476 @default.
- W3137521204 hasConcept C105795698 @default.
- W3137521204 hasConcept C11413529 @default.
- W3137521204 hasConcept C127413603 @default.
- W3137521204 hasConcept C152745839 @default.
- W3137521204 hasConcept C154945302 @default.
- W3137521204 hasConcept C155512373 @default.
- W3137521204 hasConcept C159877910 @default.
- W3137521204 hasConcept C161584116 @default.
- W3137521204 hasConcept C172707124 @default.
- W3137521204 hasConcept C17281054 @default.
- W3137521204 hasConcept C199163554 @default.
- W3137521204 hasConcept C2524010 @default.
- W3137521204 hasConcept C2775924081 @default.
- W3137521204 hasConcept C33923547 @default.
- W3137521204 hasConcept C41008148 @default.
- W3137521204 hasConcept C47446073 @default.
- W3137521204 hasConcept C57691317 @default.
- W3137521204 hasConcept C78519656 @default.
- W3137521204 hasConceptScore W3137521204C105795698 @default.
- W3137521204 hasConceptScore W3137521204C11413529 @default.
- W3137521204 hasConceptScore W3137521204C127413603 @default.
- W3137521204 hasConceptScore W3137521204C152745839 @default.
- W3137521204 hasConceptScore W3137521204C154945302 @default.
- W3137521204 hasConceptScore W3137521204C155512373 @default.
- W3137521204 hasConceptScore W3137521204C159877910 @default.
- W3137521204 hasConceptScore W3137521204C161584116 @default.
- W3137521204 hasConceptScore W3137521204C172707124 @default.
- W3137521204 hasConceptScore W3137521204C17281054 @default.
- W3137521204 hasConceptScore W3137521204C199163554 @default.
- W3137521204 hasConceptScore W3137521204C2524010 @default.
- W3137521204 hasConceptScore W3137521204C2775924081 @default.
- W3137521204 hasConceptScore W3137521204C33923547 @default.
- W3137521204 hasConceptScore W3137521204C41008148 @default.
- W3137521204 hasConceptScore W3137521204C47446073 @default.
- W3137521204 hasConceptScore W3137521204C57691317 @default.
- W3137521204 hasConceptScore W3137521204C78519656 @default.
- W3137521204 hasLocation W31375212041 @default.
- W3137521204 hasOpenAccess W3137521204 @default.
- W3137521204 hasPrimaryLocation W31375212041 @default.
- W3137521204 hasRelatedWork W103786094 @default.
- W3137521204 hasRelatedWork W2003969129 @default.
- W3137521204 hasRelatedWork W20141250 @default.
- W3137521204 hasRelatedWork W2065026031 @default.
- W3137521204 hasRelatedWork W2149615628 @default.
- W3137521204 hasRelatedWork W2521801979 @default.
- W3137521204 hasRelatedWork W2576310945 @default.
- W3137521204 hasRelatedWork W2920624374 @default.
- W3137521204 hasRelatedWork W3012996548 @default.