Matches in SemOpenAlex for { <https://semopenalex.org/work/W3137532913> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W3137532913 abstract "Machine learning models of accelerator systems (`surrogate models') are able to provide fast, accurate predictions of accelerator physics phenomena. However, approaches to date typically do not include measured input diagnostics, such as the initial beam distributions, which are critical for accurately representing the beam evolution through the system. In addition, these inputs often vary over time, and models that can account for these changing conditions are needed. Simulations are in some cases needed to provide sufficient training data. These typically represent the designed machine before construction; however, the behavior of the installed components may be quite different due to changes over time or static differences that were not modeled. Therefore, surrogate models that can leverage both simulation and measured data successfully are needed. We introduce an approach based on convolutional neural networks that uses the drive laser distribution and scalar settings as inputs for the Linac Coherent Light Source II injector frontend. The model is able to predict scalar beam parameters and the transverse beam distribution downstream, taking into account the impact of time-varying non-uniformities in the initial transverse laser distribution. We also introduce and evaluate a transfer learning procedure for adapting the surrogate model from the simulation domain to the measurement domain, to account for differences between the two. Applying this approach to our test case results in a model that can predict test sample outputs within a mean absolute percent error of 7.6%. This is a substantial improvement over the model trained only on simulations, which has an error of 112.7% when applied to measured data. While we focus on the LCLS-II Injector frontend, these approaches for improving ML-based online modeling of injector systems could be easily adapted to other accelerator facilities." @default.
- W3137532913 created "2021-03-29" @default.
- W3137532913 creator A5002010249 @default.
- W3137532913 creator A5035364643 @default.
- W3137532913 creator A5035866310 @default.
- W3137532913 creator A5068226355 @default.
- W3137532913 creator A5076471800 @default.
- W3137532913 creator A5078321808 @default.
- W3137532913 date "2021-03-12" @default.
- W3137532913 modified "2023-09-25" @default.
- W3137532913 title "Improving Surrogate Model Accuracy for the LCLS-II Injector Frontend Using Convolutional Neural Networks and Transfer Learning" @default.
- W3137532913 cites W2031786318 @default.
- W3137532913 cites W2034368206 @default.
- W3137532913 cites W2090923791 @default.
- W3137532913 cites W2095705004 @default.
- W3137532913 cites W2148143831 @default.
- W3137532913 cites W2165698076 @default.
- W3137532913 cites W2315370852 @default.
- W3137532913 cites W2339485419 @default.
- W3137532913 cites W2536744073 @default.
- W3137532913 cites W2565307056 @default.
- W3137532913 cites W2731935965 @default.
- W3137532913 cites W2884949476 @default.
- W3137532913 cites W2901973743 @default.
- W3137532913 cites W2964121744 @default.
- W3137532913 cites W2982968920 @default.
- W3137532913 cites W2999665339 @default.
- W3137532913 cites W3105109089 @default.
- W3137532913 cites W3111898220 @default.
- W3137532913 cites W46086471 @default.
- W3137532913 cites W99485931 @default.
- W3137532913 doi "https://doi.org/10.48550/arxiv.2103.07540" @default.
- W3137532913 hasPublicationYear "2021" @default.
- W3137532913 type Work @default.
- W3137532913 sameAs 3137532913 @default.
- W3137532913 citedByCount "2" @default.
- W3137532913 countsByYear W31375329132021 @default.
- W3137532913 crossrefType "posted-content" @default.
- W3137532913 hasAuthorship W3137532913A5002010249 @default.
- W3137532913 hasAuthorship W3137532913A5035364643 @default.
- W3137532913 hasAuthorship W3137532913A5035866310 @default.
- W3137532913 hasAuthorship W3137532913A5068226355 @default.
- W3137532913 hasAuthorship W3137532913A5076471800 @default.
- W3137532913 hasAuthorship W3137532913A5078321808 @default.
- W3137532913 hasBestOaLocation W31375329131 @default.
- W3137532913 hasConcept C11413529 @default.
- W3137532913 hasConcept C119857082 @default.
- W3137532913 hasConcept C120665830 @default.
- W3137532913 hasConcept C121332964 @default.
- W3137532913 hasConcept C131675550 @default.
- W3137532913 hasConcept C150899416 @default.
- W3137532913 hasConcept C153083717 @default.
- W3137532913 hasConcept C154945302 @default.
- W3137532913 hasConcept C168834538 @default.
- W3137532913 hasConcept C2524010 @default.
- W3137532913 hasConcept C33923547 @default.
- W3137532913 hasConcept C41008148 @default.
- W3137532913 hasConcept C50644808 @default.
- W3137532913 hasConcept C57691317 @default.
- W3137532913 hasConcept C81363708 @default.
- W3137532913 hasConceptScore W3137532913C11413529 @default.
- W3137532913 hasConceptScore W3137532913C119857082 @default.
- W3137532913 hasConceptScore W3137532913C120665830 @default.
- W3137532913 hasConceptScore W3137532913C121332964 @default.
- W3137532913 hasConceptScore W3137532913C131675550 @default.
- W3137532913 hasConceptScore W3137532913C150899416 @default.
- W3137532913 hasConceptScore W3137532913C153083717 @default.
- W3137532913 hasConceptScore W3137532913C154945302 @default.
- W3137532913 hasConceptScore W3137532913C168834538 @default.
- W3137532913 hasConceptScore W3137532913C2524010 @default.
- W3137532913 hasConceptScore W3137532913C33923547 @default.
- W3137532913 hasConceptScore W3137532913C41008148 @default.
- W3137532913 hasConceptScore W3137532913C50644808 @default.
- W3137532913 hasConceptScore W3137532913C57691317 @default.
- W3137532913 hasConceptScore W3137532913C81363708 @default.
- W3137532913 hasLocation W31375329131 @default.
- W3137532913 hasOpenAccess W3137532913 @default.
- W3137532913 hasPrimaryLocation W31375329131 @default.
- W3137532913 hasRelatedWork W2963958939 @default.
- W3137532913 hasRelatedWork W2972069047 @default.
- W3137532913 hasRelatedWork W3091976719 @default.
- W3137532913 hasRelatedWork W3135818718 @default.
- W3137532913 hasRelatedWork W3173182854 @default.
- W3137532913 hasRelatedWork W3189091156 @default.
- W3137532913 hasRelatedWork W3192840557 @default.
- W3137532913 hasRelatedWork W4206156330 @default.
- W3137532913 hasRelatedWork W4312501200 @default.
- W3137532913 hasRelatedWork W4313050734 @default.
- W3137532913 isParatext "false" @default.
- W3137532913 isRetracted "false" @default.
- W3137532913 magId "3137532913" @default.
- W3137532913 workType "article" @default.