Matches in SemOpenAlex for { <https://semopenalex.org/work/W3137560215> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W3137560215 endingPage "6396" @default.
- W3137560215 startingPage "6367" @default.
- W3137560215 abstract "We investigate the well-posedness of the fast diffusion equation (FDE) on noncompact Riemannian manifolds. Existence and uniqueness of solutions for <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper L Superscript 1> <mml:semantics> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>1</mml:mn> </mml:msup> <mml:annotation encoding=application/x-tex>L^1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> initial data was established in Bonforte, Grillo, and Vázquez [J. Evol. Equ. 8 (2008), pp. 99–128]. However, in the Euclidean space, it is known from Herrero and Pierre [Trans. Amer. Math. Soc. 291 (1985), pp. 145–158] that the Cauchy problem associated with the FDE is well posed for initial data that are merely in <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper L Subscript normal l normal o normal c Superscript 1> <mml:semantics> <mml:msubsup> <mml:mi>L</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=normal>l</mml:mi> <mml:mi mathvariant=normal>o</mml:mi> <mml:mi mathvariant=normal>c</mml:mi> </mml:mrow> </mml:mrow> <mml:mn>1</mml:mn> </mml:msubsup> <mml:annotation encoding=application/x-tex>L^1_{mathrm {loc}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We establish here that such data still give rise to global solutions on general manifolds. If, moreover, the radial Ricci curvature satisfies a suitable pointwise bound from below (possibly diverging to <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=negative normal infinity> <mml:semantics> <mml:mrow> <mml:mo>−<!-- − --></mml:mo> <mml:mi mathvariant=normal>∞<!-- ∞ --></mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>-infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula> at spatial infinity), we prove that also uniqueness holds, for the same type of data, in the class of strong solutions. Besides, assuming in addition that the initial datum is in <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper L Subscript normal l normal o normal c Superscript 2> <mml:semantics> <mml:msubsup> <mml:mi>L</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=normal>l</mml:mi> <mml:mi mathvariant=normal>o</mml:mi> <mml:mi mathvariant=normal>c</mml:mi> </mml:mrow> </mml:mrow> <mml:mn>2</mml:mn> </mml:msubsup> <mml:annotation encoding=application/x-tex>L^2_{mathrm {loc}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and nonnegative, a minimal solution is shown to exist, and we establish uniqueness of purely (nonnegative) distributional solutions, a fact that to our knowledge was not known before even in the Euclidean space. The required curvature bound is sharp, since on model manifolds it is equivalent to stochastic completeness, and it was shown in Grillo, Ishige, and Muratori [J. Math. Pures Appl. (9) 139 (2020), pp. 63–82] that uniqueness for the FDE fails even in the class of bounded solutions when stochastic completeness does not hold. A crucial ingredient of the uniqueness result is the proof of nonexistence of nonnegative, nontrivial distributional subsolutions to certain semilinear elliptic equations with power nonlinearities, of independent interest." @default.
- W3137560215 created "2021-03-29" @default.
- W3137560215 creator A5013473585 @default.
- W3137560215 creator A5017773423 @default.
- W3137560215 creator A5053674909 @default.
- W3137560215 date "2021-06-16" @default.
- W3137560215 modified "2023-09-30" @default.
- W3137560215 title "Fast diffusion on noncompact manifolds: Well-posedness theory and connections with semilinear elliptic equations" @default.
- W3137560215 cites W1490360156 @default.
- W3137560215 cites W1698081298 @default.
- W3137560215 cites W1975180701 @default.
- W3137560215 cites W1977575427 @default.
- W3137560215 cites W2012151066 @default.
- W3137560215 cites W2023747041 @default.
- W3137560215 cites W2024890465 @default.
- W3137560215 cites W2030116631 @default.
- W3137560215 cites W2040745437 @default.
- W3137560215 cites W2049759489 @default.
- W3137560215 cites W2055705334 @default.
- W3137560215 cites W2056441657 @default.
- W3137560215 cites W2059328025 @default.
- W3137560215 cites W2072453464 @default.
- W3137560215 cites W2072685235 @default.
- W3137560215 cites W2081455845 @default.
- W3137560215 cites W2232537196 @default.
- W3137560215 cites W2325043349 @default.
- W3137560215 cites W2521469838 @default.
- W3137560215 cites W2598025255 @default.
- W3137560215 cites W2799198379 @default.
- W3137560215 cites W290983800 @default.
- W3137560215 cites W2962974000 @default.
- W3137560215 cites W2963064872 @default.
- W3137560215 cites W2963085897 @default.
- W3137560215 cites W2963689182 @default.
- W3137560215 cites W3024614056 @default.
- W3137560215 cites W3100771690 @default.
- W3137560215 cites W3105601019 @default.
- W3137560215 cites W4205377395 @default.
- W3137560215 cites W4230957423 @default.
- W3137560215 cites W52206041 @default.
- W3137560215 doi "https://doi.org/10.1090/tran/8431" @default.
- W3137560215 hasPublicationYear "2021" @default.
- W3137560215 type Work @default.
- W3137560215 sameAs 3137560215 @default.
- W3137560215 citedByCount "3" @default.
- W3137560215 countsByYear W31375602152022 @default.
- W3137560215 countsByYear W31375602152023 @default.
- W3137560215 crossrefType "journal-article" @default.
- W3137560215 hasAuthorship W3137560215A5013473585 @default.
- W3137560215 hasAuthorship W3137560215A5017773423 @default.
- W3137560215 hasAuthorship W3137560215A5053674909 @default.
- W3137560215 hasBestOaLocation W31375602151 @default.
- W3137560215 hasConcept C11413529 @default.
- W3137560215 hasConcept C134306372 @default.
- W3137560215 hasConcept C2777021972 @default.
- W3137560215 hasConcept C33923547 @default.
- W3137560215 hasConcept C41008148 @default.
- W3137560215 hasConceptScore W3137560215C11413529 @default.
- W3137560215 hasConceptScore W3137560215C134306372 @default.
- W3137560215 hasConceptScore W3137560215C2777021972 @default.
- W3137560215 hasConceptScore W3137560215C33923547 @default.
- W3137560215 hasConceptScore W3137560215C41008148 @default.
- W3137560215 hasFunder F4320321873 @default.
- W3137560215 hasIssue "9" @default.
- W3137560215 hasLocation W31375602151 @default.
- W3137560215 hasLocation W31375602152 @default.
- W3137560215 hasLocation W31375602153 @default.
- W3137560215 hasOpenAccess W3137560215 @default.
- W3137560215 hasPrimaryLocation W31375602151 @default.
- W3137560215 hasRelatedWork W1982488386 @default.
- W3137560215 hasRelatedWork W1993453399 @default.
- W3137560215 hasRelatedWork W2014702954 @default.
- W3137560215 hasRelatedWork W2030975547 @default.
- W3137560215 hasRelatedWork W2044115466 @default.
- W3137560215 hasRelatedWork W2320758659 @default.
- W3137560215 hasRelatedWork W2325254006 @default.
- W3137560215 hasRelatedWork W2350012146 @default.
- W3137560215 hasRelatedWork W2963488231 @default.
- W3137560215 hasRelatedWork W2222154592 @default.
- W3137560215 hasVolume "374" @default.
- W3137560215 isParatext "false" @default.
- W3137560215 isRetracted "false" @default.
- W3137560215 magId "3137560215" @default.
- W3137560215 workType "article" @default.