Matches in SemOpenAlex for { <https://semopenalex.org/work/W3137605038> ?p ?o ?g. }
- W3137605038 abstract "Patient flow analysis can be studied from a clinical and or operational perspective using simulation. Traditional statistical methods such as stochastic distribution methods have been used to construct patient flow simulation submodels such as patient inflow, Length of Stay (LoS), Cost of Treatment (CoT) and Clinical Pathway (CP) models. However, patient inflow demonstrates seasonality, trend and variation over time. LoS, CoT and CP are significantly determined by attributes of patients and clinical and laboratory test results. For this reason, patient flow simulation models constructed using traditional statistical methods are criticized for ignoring heterogeneity and their contribution to personalized and value based healthcare. On the other hand, machine learning methods have proven to be efficient to study and predict admission rate, LoS, CoT, and CP. This paper, hence, describes why coupling machine learning with patient flow simulation is important and proposes a conceptual architecture that shows how to integrate machine learning with patient flow simulation." @default.
- W3137605038 created "2021-03-29" @default.
- W3137605038 creator A5011301554 @default.
- W3137605038 creator A5029904389 @default.
- W3137605038 creator A5041654947 @default.
- W3137605038 creator A5053666856 @default.
- W3137605038 date "2021-03-22" @default.
- W3137605038 modified "2023-09-26" @default.
- W3137605038 title "Why Machine Learning Integrated Patient Flow Simulation?" @default.
- W3137605038 cites W1544771442 @default.
- W3137605038 cites W1583581357 @default.
- W3137605038 cites W1971087048 @default.
- W3137605038 cites W1971698939 @default.
- W3137605038 cites W1975742026 @default.
- W3137605038 cites W1978177659 @default.
- W3137605038 cites W1983570167 @default.
- W3137605038 cites W2003594537 @default.
- W3137605038 cites W2014002054 @default.
- W3137605038 cites W2018677933 @default.
- W3137605038 cites W2029096430 @default.
- W3137605038 cites W2036924892 @default.
- W3137605038 cites W2059445798 @default.
- W3137605038 cites W2060789647 @default.
- W3137605038 cites W2111125601 @default.
- W3137605038 cites W2114718748 @default.
- W3137605038 cites W2129285512 @default.
- W3137605038 cites W2151865982 @default.
- W3137605038 cites W2444344619 @default.
- W3137605038 cites W2526152140 @default.
- W3137605038 cites W2594243812 @default.
- W3137605038 cites W2609847913 @default.
- W3137605038 cites W2734339171 @default.
- W3137605038 cites W2735780135 @default.
- W3137605038 cites W2772892852 @default.
- W3137605038 cites W2796794885 @default.
- W3137605038 cites W2802835402 @default.
- W3137605038 cites W2808280655 @default.
- W3137605038 cites W2810783309 @default.
- W3137605038 cites W2884597820 @default.
- W3137605038 cites W2886586773 @default.
- W3137605038 cites W2910844001 @default.
- W3137605038 cites W2917211387 @default.
- W3137605038 cites W2940845291 @default.
- W3137605038 cites W2943491685 @default.
- W3137605038 cites W2963629630 @default.
- W3137605038 cites W2965187647 @default.
- W3137605038 cites W2973800891 @default.
- W3137605038 cites W2995112182 @default.
- W3137605038 cites W2995259945 @default.
- W3137605038 cites W3007412959 @default.
- W3137605038 cites W3015817327 @default.
- W3137605038 cites W3017747553 @default.
- W3137605038 cites W3024251604 @default.
- W3137605038 cites W3145025916 @default.
- W3137605038 cites W2558152628 @default.
- W3137605038 doi "https://doi.org/10.36819/sw21.041" @default.
- W3137605038 hasPublicationYear "2021" @default.
- W3137605038 type Work @default.
- W3137605038 sameAs 3137605038 @default.
- W3137605038 citedByCount "2" @default.
- W3137605038 countsByYear W31376050382023 @default.
- W3137605038 crossrefType "proceedings-article" @default.
- W3137605038 hasAuthorship W3137605038A5011301554 @default.
- W3137605038 hasAuthorship W3137605038A5029904389 @default.
- W3137605038 hasAuthorship W3137605038A5041654947 @default.
- W3137605038 hasAuthorship W3137605038A5053666856 @default.
- W3137605038 hasBestOaLocation W31376050381 @default.
- W3137605038 hasConcept C119857082 @default.
- W3137605038 hasConcept C121332964 @default.
- W3137605038 hasConcept C154945302 @default.
- W3137605038 hasConcept C199360897 @default.
- W3137605038 hasConcept C2524010 @default.
- W3137605038 hasConcept C2776132308 @default.
- W3137605038 hasConcept C2780801425 @default.
- W3137605038 hasConcept C33923547 @default.
- W3137605038 hasConcept C38349280 @default.
- W3137605038 hasConcept C41008148 @default.
- W3137605038 hasConcept C57879066 @default.
- W3137605038 hasConceptScore W3137605038C119857082 @default.
- W3137605038 hasConceptScore W3137605038C121332964 @default.
- W3137605038 hasConceptScore W3137605038C154945302 @default.
- W3137605038 hasConceptScore W3137605038C199360897 @default.
- W3137605038 hasConceptScore W3137605038C2524010 @default.
- W3137605038 hasConceptScore W3137605038C2776132308 @default.
- W3137605038 hasConceptScore W3137605038C2780801425 @default.
- W3137605038 hasConceptScore W3137605038C33923547 @default.
- W3137605038 hasConceptScore W3137605038C38349280 @default.
- W3137605038 hasConceptScore W3137605038C41008148 @default.
- W3137605038 hasConceptScore W3137605038C57879066 @default.
- W3137605038 hasLocation W31376050381 @default.
- W3137605038 hasLocation W31376050382 @default.
- W3137605038 hasLocation W31376050383 @default.
- W3137605038 hasOpenAccess W3137605038 @default.
- W3137605038 hasPrimaryLocation W31376050381 @default.
- W3137605038 hasRelatedWork W2961085424 @default.
- W3137605038 hasRelatedWork W3046775127 @default.
- W3137605038 hasRelatedWork W3170094116 @default.
- W3137605038 hasRelatedWork W4205958290 @default.
- W3137605038 hasRelatedWork W4285260836 @default.
- W3137605038 hasRelatedWork W4286629047 @default.