Matches in SemOpenAlex for { <https://semopenalex.org/work/W3137647102> ?p ?o ?g. }
- W3137647102 abstract "The COVID-19 pandemic represents the most significant public health disaster since the 1918 influenza pandemic. During pandemics such as COVID-19, timely and reliable spatio-temporal forecasting of epidemic dynamics is crucial. Deep learning-based time series models for forecasting have recently gained popularity and have been successfully used for epidemic forecasting. Here we focus on the design and analysis of deep learning-based models for COVID-19 forecasting. We implement multiple recurrent neural network-based deep learning models and combine them using the stacking ensemble technique. In order to incorporate the effects of multiple factors in COVID-19 spread, we consider multiple sources such as COVID-19 confirmed and death case count data and testing data for better predictions. To overcome the sparsity of training data and to address the dynamic correlation of the disease, we propose clustering-based training for high-resolution forecasting. The methods help us to identify the similar trends of certain groups of regions due to various spatio-temporal effects. We examine the proposed method for forecasting weekly COVID-19 new confirmed cases at county-, state-, and country-level. A comprehensive comparison between different time series models in COVID-19 context is conducted and analyzed. The results show that simple deep learning models can achieve comparable or better performance when compared with more complicated models. We are currently integrating our methods as a part of our weekly forecasts that we provide state and federal authorities." @default.
- W3137647102 created "2021-03-29" @default.
- W3137647102 creator A5008421418 @default.
- W3137647102 creator A5020293284 @default.
- W3137647102 creator A5031381738 @default.
- W3137647102 creator A5065844089 @default.
- W3137647102 creator A5072570670 @default.
- W3137647102 creator A5081507485 @default.
- W3137647102 date "2020-12-10" @default.
- W3137647102 modified "2023-10-03" @default.
- W3137647102 title "Examining Deep Learning Models with Multiple Data Sources for COVID-19 Forecasting" @default.
- W3137647102 cites W2037537012 @default.
- W3137647102 cites W2064675550 @default.
- W3137647102 cites W2126831543 @default.
- W3137647102 cites W2157331557 @default.
- W3137647102 cites W2244486986 @default.
- W3137647102 cites W2408821405 @default.
- W3137647102 cites W2754391370 @default.
- W3137647102 cites W2772780441 @default.
- W3137647102 cites W2798329844 @default.
- W3137647102 cites W2953101261 @default.
- W3137647102 cites W2953231487 @default.
- W3137647102 cites W2965118797 @default.
- W3137647102 cites W3009876049 @default.
- W3137647102 cites W3010233963 @default.
- W3137647102 cites W3013360115 @default.
- W3137647102 cites W3013649595 @default.
- W3137647102 cites W3018782651 @default.
- W3137647102 cites W3022714712 @default.
- W3137647102 cites W3022787740 @default.
- W3137647102 cites W3023222649 @default.
- W3137647102 cites W3036309913 @default.
- W3137647102 cites W3082591845 @default.
- W3137647102 cites W3099479832 @default.
- W3137647102 cites W3118109004 @default.
- W3137647102 doi "https://doi.org/10.1109/bigdata50022.2020.9377904" @default.
- W3137647102 hasPublicationYear "2020" @default.
- W3137647102 type Work @default.
- W3137647102 sameAs 3137647102 @default.
- W3137647102 citedByCount "7" @default.
- W3137647102 countsByYear W31376471022021 @default.
- W3137647102 countsByYear W31376471022022 @default.
- W3137647102 countsByYear W31376471022023 @default.
- W3137647102 crossrefType "proceedings-article" @default.
- W3137647102 hasAuthorship W3137647102A5008421418 @default.
- W3137647102 hasAuthorship W3137647102A5020293284 @default.
- W3137647102 hasAuthorship W3137647102A5031381738 @default.
- W3137647102 hasAuthorship W3137647102A5065844089 @default.
- W3137647102 hasAuthorship W3137647102A5072570670 @default.
- W3137647102 hasAuthorship W3137647102A5081507485 @default.
- W3137647102 hasBestOaLocation W31376471021 @default.
- W3137647102 hasConcept C108583219 @default.
- W3137647102 hasConcept C119857082 @default.
- W3137647102 hasConcept C124101348 @default.
- W3137647102 hasConcept C142724271 @default.
- W3137647102 hasConcept C151406439 @default.
- W3137647102 hasConcept C154945302 @default.
- W3137647102 hasConcept C15744967 @default.
- W3137647102 hasConcept C166957645 @default.
- W3137647102 hasConcept C205649164 @default.
- W3137647102 hasConcept C2779134260 @default.
- W3137647102 hasConcept C2779343474 @default.
- W3137647102 hasConcept C2780586970 @default.
- W3137647102 hasConcept C3008058167 @default.
- W3137647102 hasConcept C41008148 @default.
- W3137647102 hasConcept C50644808 @default.
- W3137647102 hasConcept C524204448 @default.
- W3137647102 hasConcept C67186912 @default.
- W3137647102 hasConcept C71924100 @default.
- W3137647102 hasConcept C73555534 @default.
- W3137647102 hasConcept C75684735 @default.
- W3137647102 hasConcept C77088390 @default.
- W3137647102 hasConcept C77805123 @default.
- W3137647102 hasConcept C89623803 @default.
- W3137647102 hasConceptScore W3137647102C108583219 @default.
- W3137647102 hasConceptScore W3137647102C119857082 @default.
- W3137647102 hasConceptScore W3137647102C124101348 @default.
- W3137647102 hasConceptScore W3137647102C142724271 @default.
- W3137647102 hasConceptScore W3137647102C151406439 @default.
- W3137647102 hasConceptScore W3137647102C154945302 @default.
- W3137647102 hasConceptScore W3137647102C15744967 @default.
- W3137647102 hasConceptScore W3137647102C166957645 @default.
- W3137647102 hasConceptScore W3137647102C205649164 @default.
- W3137647102 hasConceptScore W3137647102C2779134260 @default.
- W3137647102 hasConceptScore W3137647102C2779343474 @default.
- W3137647102 hasConceptScore W3137647102C2780586970 @default.
- W3137647102 hasConceptScore W3137647102C3008058167 @default.
- W3137647102 hasConceptScore W3137647102C41008148 @default.
- W3137647102 hasConceptScore W3137647102C50644808 @default.
- W3137647102 hasConceptScore W3137647102C524204448 @default.
- W3137647102 hasConceptScore W3137647102C67186912 @default.
- W3137647102 hasConceptScore W3137647102C71924100 @default.
- W3137647102 hasConceptScore W3137647102C73555534 @default.
- W3137647102 hasConceptScore W3137647102C75684735 @default.
- W3137647102 hasConceptScore W3137647102C77088390 @default.
- W3137647102 hasConceptScore W3137647102C77805123 @default.
- W3137647102 hasConceptScore W3137647102C89623803 @default.
- W3137647102 hasFunder F4320332161 @default.
- W3137647102 hasFunder F4320332162 @default.
- W3137647102 hasLocation W31376471021 @default.