Matches in SemOpenAlex for { <https://semopenalex.org/work/W3137647726> ?p ?o ?g. }
- W3137647726 endingPage "599" @default.
- W3137647726 startingPage "580" @default.
- W3137647726 abstract "Problem definition: Clinical trials are crucial to new drug development. This study investigates optimal patient enrollment in clinical trials with interim analyses, which are analyses of treatment responses from patients at intermediate points. Our model considers uncertainties in patient enrollment and drug treatment effectiveness. We consider the benefits of completing a trial early and the cost of accelerating a trial by maximizing the net present value of drug cumulative profit. Academic/practical relevance: Clinical trials frequently account for the largest cost in drug development, and patient enrollment is an important problem in trial management. Our study develops a dynamic program, accurately capturing the dynamics of the problem, to optimize patient enrollment while learning the treatment effectiveness of an investigated drug. Methodology: The model explicitly captures both the physical state (enrolled patients) and belief states about the effectiveness of the investigated drug and a standard treatment drug. Using Bayesian updates and dynamic programming, we establish monotonicity of the value function in state variables and characterize an optimal enrollment policy. We also introduce, for the first time, the use of backward approximate dynamic programming (ADP) for this problem class. We illustrate the findings using a clinical trial program from a leading firm. Our study performs sensitivity analyses of the input parameters on the optimal enrollment policy. Results: The value function is monotonic in cumulative patient enrollment and the average responses of treatment for the investigated drug and standard treatment drug. The optimal enrollment policy is nondecreasing in the average response from patients using the investigated drug and is nonincreasing in cumulative patient enrollment in periods between two successive interim analyses. The forward ADP algorithm (or backward ADP algorithm) exploiting the monotonicity of the value function reduced the run time from 1.5 months using the exact method to a day (or 20 minutes) within 4% of the exact method. Through an application to a leading firm’s clinical trial program, the study demonstrates that the firm can have a sizable gain of drug profit following the optimal policy that our model provides. Managerial implications: We developed a new model for improving the management of clinical trials. Our study provides insights of an optimal policy and insights into the sensitivity of value function to the dropout rate and prior probability distribution. A firm can have a sizable gain in the drug’s profit by managing its trials using the optimal policies and the properties of value function. We illustrated that firms can use the ADP algorithms to develop their patient enrollment strategies." @default.
- W3137647726 created "2021-03-29" @default.
- W3137647726 creator A5017995200 @default.
- W3137647726 creator A5033735272 @default.
- W3137647726 creator A5054833334 @default.
- W3137647726 date "2022-01-01" @default.
- W3137647726 modified "2023-10-10" @default.
- W3137647726 title "Adaptive Learning of Drug Quality and Optimization of Patient Recruitment for Clinical Trials with Dropouts" @default.
- W3137647726 cites W1601081659 @default.
- W3137647726 cites W1871424574 @default.
- W3137647726 cites W1915939971 @default.
- W3137647726 cites W1966687135 @default.
- W3137647726 cites W1979295088 @default.
- W3137647726 cites W1987975548 @default.
- W3137647726 cites W1997362383 @default.
- W3137647726 cites W2000234234 @default.
- W3137647726 cites W2006656814 @default.
- W3137647726 cites W2016647253 @default.
- W3137647726 cites W2020087076 @default.
- W3137647726 cites W2025562953 @default.
- W3137647726 cites W2032100464 @default.
- W3137647726 cites W2038369588 @default.
- W3137647726 cites W2046292029 @default.
- W3137647726 cites W2060732189 @default.
- W3137647726 cites W2069387753 @default.
- W3137647726 cites W2072709311 @default.
- W3137647726 cites W2103157313 @default.
- W3137647726 cites W2106554316 @default.
- W3137647726 cites W2112051922 @default.
- W3137647726 cites W2130913064 @default.
- W3137647726 cites W2135582661 @default.
- W3137647726 cites W2166768348 @default.
- W3137647726 cites W2217862056 @default.
- W3137647726 cites W2499002200 @default.
- W3137647726 cites W2526051401 @default.
- W3137647726 cites W2596575759 @default.
- W3137647726 cites W2892012697 @default.
- W3137647726 cites W3121380969 @default.
- W3137647726 cites W3123821384 @default.
- W3137647726 cites W3124143577 @default.
- W3137647726 cites W3124403080 @default.
- W3137647726 cites W3125168522 @default.
- W3137647726 doi "https://doi.org/10.1287/msom.2020.0936" @default.
- W3137647726 hasPublicationYear "2022" @default.
- W3137647726 type Work @default.
- W3137647726 sameAs 3137647726 @default.
- W3137647726 citedByCount "6" @default.
- W3137647726 countsByYear W31376477262022 @default.
- W3137647726 countsByYear W31376477262023 @default.
- W3137647726 crossrefType "journal-article" @default.
- W3137647726 hasAuthorship W3137647726A5017995200 @default.
- W3137647726 hasAuthorship W3137647726A5033735272 @default.
- W3137647726 hasAuthorship W3137647726A5054833334 @default.
- W3137647726 hasConcept C107673813 @default.
- W3137647726 hasConcept C11413529 @default.
- W3137647726 hasConcept C118552586 @default.
- W3137647726 hasConcept C126255220 @default.
- W3137647726 hasConcept C142724271 @default.
- W3137647726 hasConcept C154945302 @default.
- W3137647726 hasConcept C166957645 @default.
- W3137647726 hasConcept C2776957806 @default.
- W3137647726 hasConcept C2780035454 @default.
- W3137647726 hasConcept C33923547 @default.
- W3137647726 hasConcept C37404715 @default.
- W3137647726 hasConcept C41008148 @default.
- W3137647726 hasConcept C535046627 @default.
- W3137647726 hasConcept C64903051 @default.
- W3137647726 hasConcept C71924100 @default.
- W3137647726 hasConcept C95457728 @default.
- W3137647726 hasConceptScore W3137647726C107673813 @default.
- W3137647726 hasConceptScore W3137647726C11413529 @default.
- W3137647726 hasConceptScore W3137647726C118552586 @default.
- W3137647726 hasConceptScore W3137647726C126255220 @default.
- W3137647726 hasConceptScore W3137647726C142724271 @default.
- W3137647726 hasConceptScore W3137647726C154945302 @default.
- W3137647726 hasConceptScore W3137647726C166957645 @default.
- W3137647726 hasConceptScore W3137647726C2776957806 @default.
- W3137647726 hasConceptScore W3137647726C2780035454 @default.
- W3137647726 hasConceptScore W3137647726C33923547 @default.
- W3137647726 hasConceptScore W3137647726C37404715 @default.
- W3137647726 hasConceptScore W3137647726C41008148 @default.
- W3137647726 hasConceptScore W3137647726C535046627 @default.
- W3137647726 hasConceptScore W3137647726C64903051 @default.
- W3137647726 hasConceptScore W3137647726C71924100 @default.
- W3137647726 hasConceptScore W3137647726C95457728 @default.
- W3137647726 hasIssue "1" @default.
- W3137647726 hasLocation W31376477261 @default.
- W3137647726 hasOpenAccess W3137647726 @default.
- W3137647726 hasPrimaryLocation W31376477261 @default.
- W3137647726 hasRelatedWork W1969630132 @default.
- W3137647726 hasRelatedWork W2059665379 @default.
- W3137647726 hasRelatedWork W2470067656 @default.
- W3137647726 hasRelatedWork W2738233028 @default.
- W3137647726 hasRelatedWork W2901809887 @default.
- W3137647726 hasRelatedWork W4239271673 @default.
- W3137647726 hasRelatedWork W4242296308 @default.
- W3137647726 hasRelatedWork W64094104 @default.
- W3137647726 hasRelatedWork W2188607138 @default.