Matches in SemOpenAlex for { <https://semopenalex.org/work/W3137676859> ?p ?o ?g. }
- W3137676859 abstract "Uncertainty is the only certainty there is. Modeling data uncertainty is essential for regression, especially in unconstrained settings. Traditionally the direct regression formulation is considered and the uncertainty is modeled by modifying the output space to a certain family of probabilistic distributions. On the other hand, classification based regression and ranking based solutions are more popular in practice while the direct regression methods suffer from the limited performance. How to model the uncertainty within the present-day technologies for regression remains an open issue. In this paper, we propose to learn probabilistic ordinal embeddings which represent each data as a multivariate Gaussian distribution rather than a deterministic point in the latent space. An ordinal distribution constraint is proposed to exploit the ordinal nature of regression. Our probabilistic ordinal embeddings can be integrated into popular regression approaches and empower them with the ability of uncertainty estimation. Experimental results show that our approach achieves competitive performance. Code is available at https://github.com/Li-Wanhua/POEs." @default.
- W3137676859 created "2021-03-29" @default.
- W3137676859 creator A5010357390 @default.
- W3137676859 creator A5044605985 @default.
- W3137676859 creator A5082419115 @default.
- W3137676859 creator A5084679040 @default.
- W3137676859 creator A5090079801 @default.
- W3137676859 date "2021-03-25" @default.
- W3137676859 modified "2023-09-23" @default.
- W3137676859 title "Learning Probabilistic Ordinal Embeddings for Uncertainty-Aware Regression" @default.
- W3137676859 cites W114375244 @default.
- W3137676859 cites W1905153633 @default.
- W3137676859 cites W1959608418 @default.
- W3137676859 cites W1985514943 @default.
- W3137676859 cites W2009088607 @default.
- W3137676859 cites W2066454034 @default.
- W3137676859 cites W2118664399 @default.
- W3137676859 cites W2220384803 @default.
- W3137676859 cites W2417288846 @default.
- W3137676859 cites W2440214111 @default.
- W3137676859 cites W2510725918 @default.
- W3137676859 cites W2553156677 @default.
- W3137676859 cites W2600383743 @default.
- W3137676859 cites W2618011341 @default.
- W3137676859 cites W2742048379 @default.
- W3137676859 cites W2748140016 @default.
- W3137676859 cites W2771116199 @default.
- W3137676859 cites W2798655965 @default.
- W3137676859 cites W2798868324 @default.
- W3137676859 cites W2807904173 @default.
- W3137676859 cites W2884490794 @default.
- W3137676859 cites W2904852565 @default.
- W3137676859 cites W2905246249 @default.
- W3137676859 cites W2949208911 @default.
- W3137676859 cites W2955216108 @default.
- W3137676859 cites W2957744218 @default.
- W3137676859 cites W2962677013 @default.
- W3137676859 cites W2962851632 @default.
- W3137676859 cites W2962879692 @default.
- W3137676859 cites W2963165596 @default.
- W3137676859 cites W2963238274 @default.
- W3137676859 cites W2963677766 @default.
- W3137676859 cites W2963690739 @default.
- W3137676859 cites W2963878055 @default.
- W3137676859 cites W2964059111 @default.
- W3137676859 cites W2964160479 @default.
- W3137676859 cites W2964201867 @default.
- W3137676859 cites W2964339591 @default.
- W3137676859 cites W2970859221 @default.
- W3137676859 cites W2981548364 @default.
- W3137676859 cites W2984006054 @default.
- W3137676859 cites W2986070626 @default.
- W3137676859 cites W2988119488 @default.
- W3137676859 cites W2990759908 @default.
- W3137676859 cites W2991591391 @default.
- W3137676859 cites W3034464039 @default.
- W3137676859 cites W3034504038 @default.
- W3137676859 cites W3034773849 @default.
- W3137676859 cites W3035146082 @default.
- W3137676859 cites W3035376925 @default.
- W3137676859 cites W3096840866 @default.
- W3137676859 cites W3106701815 @default.
- W3137676859 cites W3109970849 @default.
- W3137676859 cites W3113634999 @default.
- W3137676859 cites W639708223 @default.
- W3137676859 doi "https://doi.org/10.48550/arxiv.2103.13629" @default.
- W3137676859 hasPublicationYear "2021" @default.
- W3137676859 type Work @default.
- W3137676859 sameAs 3137676859 @default.
- W3137676859 citedByCount "0" @default.
- W3137676859 crossrefType "posted-content" @default.
- W3137676859 hasAuthorship W3137676859A5010357390 @default.
- W3137676859 hasAuthorship W3137676859A5044605985 @default.
- W3137676859 hasAuthorship W3137676859A5082419115 @default.
- W3137676859 hasAuthorship W3137676859A5084679040 @default.
- W3137676859 hasAuthorship W3137676859A5090079801 @default.
- W3137676859 hasBestOaLocation W31376768591 @default.
- W3137676859 hasConcept C105795698 @default.
- W3137676859 hasConcept C110313322 @default.
- W3137676859 hasConcept C119857082 @default.
- W3137676859 hasConcept C124101348 @default.
- W3137676859 hasConcept C152877465 @default.
- W3137676859 hasConcept C154945302 @default.
- W3137676859 hasConcept C189430467 @default.
- W3137676859 hasConcept C33923547 @default.
- W3137676859 hasConcept C41008148 @default.
- W3137676859 hasConcept C49937458 @default.
- W3137676859 hasConcept C63817138 @default.
- W3137676859 hasConcept C83546350 @default.
- W3137676859 hasConcept C85461838 @default.
- W3137676859 hasConceptScore W3137676859C105795698 @default.
- W3137676859 hasConceptScore W3137676859C110313322 @default.
- W3137676859 hasConceptScore W3137676859C119857082 @default.
- W3137676859 hasConceptScore W3137676859C124101348 @default.
- W3137676859 hasConceptScore W3137676859C152877465 @default.
- W3137676859 hasConceptScore W3137676859C154945302 @default.
- W3137676859 hasConceptScore W3137676859C189430467 @default.
- W3137676859 hasConceptScore W3137676859C33923547 @default.
- W3137676859 hasConceptScore W3137676859C41008148 @default.
- W3137676859 hasConceptScore W3137676859C49937458 @default.