Matches in SemOpenAlex for { <https://semopenalex.org/work/W3137679908> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W3137679908 endingPage "51500" @default.
- W3137679908 startingPage "51494" @default.
- W3137679908 abstract "Scanning electron microscopy (SEM) has been widely used in optical material science. However, a considerable quantity of human resources is required to analyze and describe SEM images. In recent years, the application of computer technology in material science and engineering developed endlessly. Computer science, including data processing, simulation technique, and mathematical model, promotes material science progress tremendously. Moreover, deep learning has been achieved success in image classification and image analysis. In this paper, we propose a novel automatic analysis tool using a triplet neural network called show auto-adaptive and tell to analyze optical SEM images automatically. Firstly, we collected SEM images and corresponding captioning from previous papers and built a database. Then, a triplet neural network with proposed loss function to train the show auto-adaptive and tell model on 60% of the dataset for SEM images analysis, test on 30% and validate on 10%. Finally, experiment on the four metrics index as the evaluation criterion shows that the novel method gets better performance than previous work." @default.
- W3137679908 created "2021-03-29" @default.
- W3137679908 creator A5065979541 @default.
- W3137679908 creator A5084848203 @default.
- W3137679908 date "2021-01-01" @default.
- W3137679908 modified "2023-09-24" @default.
- W3137679908 title "Show Auto-Adaptive and Tell: Learned From the SEM Image Challenge" @default.
- W3137679908 cites W1895577753 @default.
- W3137679908 cites W2100500227 @default.
- W3137679908 cites W2119007372 @default.
- W3137679908 cites W2168747298 @default.
- W3137679908 cites W2185175083 @default.
- W3137679908 cites W2220981600 @default.
- W3137679908 cites W2269649163 @default.
- W3137679908 cites W2321627895 @default.
- W3137679908 cites W2347064614 @default.
- W3137679908 cites W2398118205 @default.
- W3137679908 cites W2533598788 @default.
- W3137679908 cites W2589934064 @default.
- W3137679908 cites W2594660495 @default.
- W3137679908 cites W2625940279 @default.
- W3137679908 cites W2741266309 @default.
- W3137679908 cites W2797033345 @default.
- W3137679908 cites W2927240970 @default.
- W3137679908 cites W2963293463 @default.
- W3137679908 cites W2963992143 @default.
- W3137679908 cites W3105263042 @default.
- W3137679908 cites W3105553032 @default.
- W3137679908 doi "https://doi.org/10.1109/access.2021.3068162" @default.
- W3137679908 hasPublicationYear "2021" @default.
- W3137679908 type Work @default.
- W3137679908 sameAs 3137679908 @default.
- W3137679908 citedByCount "1" @default.
- W3137679908 countsByYear W31376799082023 @default.
- W3137679908 crossrefType "journal-article" @default.
- W3137679908 hasAuthorship W3137679908A5065979541 @default.
- W3137679908 hasAuthorship W3137679908A5084848203 @default.
- W3137679908 hasBestOaLocation W31376799081 @default.
- W3137679908 hasConcept C108583219 @default.
- W3137679908 hasConcept C115961682 @default.
- W3137679908 hasConcept C119857082 @default.
- W3137679908 hasConcept C124101348 @default.
- W3137679908 hasConcept C153180895 @default.
- W3137679908 hasConcept C154945302 @default.
- W3137679908 hasConcept C157657479 @default.
- W3137679908 hasConcept C31972630 @default.
- W3137679908 hasConcept C41008148 @default.
- W3137679908 hasConcept C50644808 @default.
- W3137679908 hasConcept C9417928 @default.
- W3137679908 hasConceptScore W3137679908C108583219 @default.
- W3137679908 hasConceptScore W3137679908C115961682 @default.
- W3137679908 hasConceptScore W3137679908C119857082 @default.
- W3137679908 hasConceptScore W3137679908C124101348 @default.
- W3137679908 hasConceptScore W3137679908C153180895 @default.
- W3137679908 hasConceptScore W3137679908C154945302 @default.
- W3137679908 hasConceptScore W3137679908C157657479 @default.
- W3137679908 hasConceptScore W3137679908C31972630 @default.
- W3137679908 hasConceptScore W3137679908C41008148 @default.
- W3137679908 hasConceptScore W3137679908C50644808 @default.
- W3137679908 hasConceptScore W3137679908C9417928 @default.
- W3137679908 hasLocation W31376799081 @default.
- W3137679908 hasOpenAccess W3137679908 @default.
- W3137679908 hasPrimaryLocation W31376799081 @default.
- W3137679908 hasRelatedWork W2795261237 @default.
- W3137679908 hasRelatedWork W3014300295 @default.
- W3137679908 hasRelatedWork W3164822677 @default.
- W3137679908 hasRelatedWork W4223943233 @default.
- W3137679908 hasRelatedWork W4225161397 @default.
- W3137679908 hasRelatedWork W4312200629 @default.
- W3137679908 hasRelatedWork W4360585206 @default.
- W3137679908 hasRelatedWork W4364306694 @default.
- W3137679908 hasRelatedWork W4380075502 @default.
- W3137679908 hasRelatedWork W4380086463 @default.
- W3137679908 hasVolume "9" @default.
- W3137679908 isParatext "false" @default.
- W3137679908 isRetracted "false" @default.
- W3137679908 magId "3137679908" @default.
- W3137679908 workType "article" @default.