Matches in SemOpenAlex for { <https://semopenalex.org/work/W3137717089> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W3137717089 abstract "In the BigData era, large graph datasets are becoming increasingly popular due to their capability to integrate and interconnect large sources of data in many fields, e.g., social media, biology, communication networks, etc. Graph representation learning is a flexible tool that automatically extracts features from a graph node. These features can be directly used for machine learning tasks. Graph representation learning approaches producing features preserving the structural information of the graphs are still an open problem, especially in the context of largescale graphs. In this paper, we propose a new fast and scalable structural representation learning approach called SparseStruct. Our approach uses a sparse internal representation for each node, and we formally proved its ability to preserve structural information. Thanks to a light-weight algorithm where each iteration costs only linear time in the number of the edges, SparseStruct is able to easily process large graphs. In addition, it provides improvements in comparison with state of the art in terms of prediction and classification accuracy by also providing strong robustness to noise data." @default.
- W3137717089 created "2021-03-29" @default.
- W3137717089 creator A5009094578 @default.
- W3137717089 creator A5025202119 @default.
- W3137717089 creator A5053225136 @default.
- W3137717089 date "2020-12-10" @default.
- W3137717089 modified "2023-10-03" @default.
- W3137717089 title "Large-scale Sparse Structural Node Representation" @default.
- W3137717089 cites W1567365482 @default.
- W3137717089 cites W2056132907 @default.
- W3137717089 cites W2066043610 @default.
- W3137717089 cites W2067889145 @default.
- W3137717089 cites W2084626209 @default.
- W3137717089 cites W2125736156 @default.
- W3137717089 cites W2477497747 @default.
- W3137717089 cites W2607500032 @default.
- W3137717089 cites W2743469945 @default.
- W3137717089 cites W2766537588 @default.
- W3137717089 cites W2766954398 @default.
- W3137717089 cites W2792234394 @default.
- W3137717089 cites W2808409763 @default.
- W3137717089 cites W2808867307 @default.
- W3137717089 cites W2898213711 @default.
- W3137717089 cites W2962756421 @default.
- W3137717089 cites W2981151517 @default.
- W3137717089 cites W3005939550 @default.
- W3137717089 cites W3011415199 @default.
- W3137717089 cites W3104097132 @default.
- W3137717089 cites W3105705953 @default.
- W3137717089 cites W4210257598 @default.
- W3137717089 cites W4239510810 @default.
- W3137717089 doi "https://doi.org/10.1109/bigdata50022.2020.9377854" @default.
- W3137717089 hasPublicationYear "2020" @default.
- W3137717089 type Work @default.
- W3137717089 sameAs 3137717089 @default.
- W3137717089 citedByCount "8" @default.
- W3137717089 countsByYear W31377170892021 @default.
- W3137717089 countsByYear W31377170892022 @default.
- W3137717089 countsByYear W31377170892023 @default.
- W3137717089 crossrefType "proceedings-article" @default.
- W3137717089 hasAuthorship W3137717089A5009094578 @default.
- W3137717089 hasAuthorship W3137717089A5025202119 @default.
- W3137717089 hasAuthorship W3137717089A5053225136 @default.
- W3137717089 hasConcept C104317684 @default.
- W3137717089 hasConcept C116409475 @default.
- W3137717089 hasConcept C119857082 @default.
- W3137717089 hasConcept C124101348 @default.
- W3137717089 hasConcept C132525143 @default.
- W3137717089 hasConcept C154945302 @default.
- W3137717089 hasConcept C185592680 @default.
- W3137717089 hasConcept C41008148 @default.
- W3137717089 hasConcept C48044578 @default.
- W3137717089 hasConcept C55493867 @default.
- W3137717089 hasConcept C59404180 @default.
- W3137717089 hasConcept C63479239 @default.
- W3137717089 hasConcept C75684735 @default.
- W3137717089 hasConcept C77088390 @default.
- W3137717089 hasConcept C80444323 @default.
- W3137717089 hasConceptScore W3137717089C104317684 @default.
- W3137717089 hasConceptScore W3137717089C116409475 @default.
- W3137717089 hasConceptScore W3137717089C119857082 @default.
- W3137717089 hasConceptScore W3137717089C124101348 @default.
- W3137717089 hasConceptScore W3137717089C132525143 @default.
- W3137717089 hasConceptScore W3137717089C154945302 @default.
- W3137717089 hasConceptScore W3137717089C185592680 @default.
- W3137717089 hasConceptScore W3137717089C41008148 @default.
- W3137717089 hasConceptScore W3137717089C48044578 @default.
- W3137717089 hasConceptScore W3137717089C55493867 @default.
- W3137717089 hasConceptScore W3137717089C59404180 @default.
- W3137717089 hasConceptScore W3137717089C63479239 @default.
- W3137717089 hasConceptScore W3137717089C75684735 @default.
- W3137717089 hasConceptScore W3137717089C77088390 @default.
- W3137717089 hasConceptScore W3137717089C80444323 @default.
- W3137717089 hasFunder F4320306076 @default.
- W3137717089 hasFunder F4320338281 @default.
- W3137717089 hasLocation W31377170891 @default.
- W3137717089 hasOpenAccess W3137717089 @default.
- W3137717089 hasPrimaryLocation W31377170891 @default.
- W3137717089 hasRelatedWork W2368437561 @default.
- W3137717089 hasRelatedWork W2548059104 @default.
- W3137717089 hasRelatedWork W2890607871 @default.
- W3137717089 hasRelatedWork W2941091259 @default.
- W3137717089 hasRelatedWork W2974335793 @default.
- W3137717089 hasRelatedWork W3007075380 @default.
- W3137717089 hasRelatedWork W3014300295 @default.
- W3137717089 hasRelatedWork W3126928293 @default.
- W3137717089 hasRelatedWork W4292858593 @default.
- W3137717089 hasRelatedWork W4309581948 @default.
- W3137717089 isParatext "false" @default.
- W3137717089 isRetracted "false" @default.
- W3137717089 magId "3137717089" @default.
- W3137717089 workType "article" @default.