Matches in SemOpenAlex for { <https://semopenalex.org/work/W3137730786> ?p ?o ?g. }
- W3137730786 endingPage "818" @default.
- W3137730786 startingPage "818" @default.
- W3137730786 abstract "Treatment with radiolabeled ligands to prostate-specific membrane antigen (PSMA) is gaining importance in the treatment of patients with advanced prostate carcinoma. Previous imaging with positron emission tomography/computed tomography (PET/CT) is mandatory. The aim of this study was to investigate the role of radiomics features in PSMA-PET/CT scans and clinical parameters to predict response to 177Lu-PSMA treatment given just baseline PSMA scans using state-of-the-art machine learning (ML) methods.A total of 2,070 pathological hotspots annotated in 83 prostate cancer patients undergoing PSMA therapy were analyzed. Two main tasks are performed: (I) analyzing correlation of averaged (per patient) values of radiomics features of individual hotspots and clinical parameters with difference in prostate specific antigen levels (ΔPSA) in pre- and post-therapy as a therapy response indicator. (II) ML-based classification of patients into responders and non-responders based on averaged features values and clinical parameters. To achieve this, machine learning (ML) algorithms and linear regression tests are applied. Grid search, cross validation (CV) and permutation test were performed to assure that the results were significant.Radiomics features (PET_Min, PET_Correlation, CT_Min, CT_Busyness and CT_Coarseness) and clinical parameters such as Alp1 and Gleason score showed best correlations with ΔPSA. For the treatment response prediction task, 80% area under the curve (AUC), 75% sensitivity (SE), and 75% specificity (SP) were obtained, applying ML support vector machine (SVM) classifier with radial basis function (RBF) kernel on a selection of radiomics features and clinical parameters with strong correlations with ΔPSA.Machine learning based on 68Ga-PSMA PET/CT radiomics features holds promise for the prediction of response to 177Lu-PSMA treatment, given only base-line 68Ga-PSMA scan. In addition, it was shown that, the best correlating set of radiomics features with ΔPSA are superior to clinical parameters for this therapy response prediction task using ML classifiers." @default.
- W3137730786 created "2021-03-29" @default.
- W3137730786 creator A5016440729 @default.
- W3137730786 creator A5019204513 @default.
- W3137730786 creator A5023770858 @default.
- W3137730786 creator A5024581793 @default.
- W3137730786 creator A5030247543 @default.
- W3137730786 creator A5061185295 @default.
- W3137730786 creator A5064359106 @default.
- W3137730786 creator A5086461942 @default.
- W3137730786 date "2021-05-01" @default.
- W3137730786 modified "2023-10-09" @default.
- W3137730786 title "Decision-support for treatment with 177Lu-PSMA: machine learning predicts response with high accuracy based on PSMA-PET/CT and clinical parameters" @default.
- W3137730786 cites W1963061935 @default.
- W3137730786 cites W2033973189 @default.
- W3137730786 cites W2124928032 @default.
- W3137730786 cites W2125065061 @default.
- W3137730786 cites W2231056033 @default.
- W3137730786 cites W2409456704 @default.
- W3137730786 cites W2515351720 @default.
- W3137730786 cites W2582125928 @default.
- W3137730786 cites W2596023559 @default.
- W3137730786 cites W2612027160 @default.
- W3137730786 cites W2624670701 @default.
- W3137730786 cites W2766708596 @default.
- W3137730786 cites W2804079537 @default.
- W3137730786 cites W2889726085 @default.
- W3137730786 cites W2904413085 @default.
- W3137730786 cites W2970933400 @default.
- W3137730786 cites W3046865842 @default.
- W3137730786 cites W3080638124 @default.
- W3137730786 cites W3105902188 @default.
- W3137730786 doi "https://doi.org/10.21037/atm-20-6446" @default.
- W3137730786 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8246232" @default.
- W3137730786 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34268431" @default.
- W3137730786 hasPublicationYear "2021" @default.
- W3137730786 type Work @default.
- W3137730786 sameAs 3137730786 @default.
- W3137730786 citedByCount "16" @default.
- W3137730786 countsByYear W31377307862021 @default.
- W3137730786 countsByYear W31377307862022 @default.
- W3137730786 countsByYear W31377307862023 @default.
- W3137730786 crossrefType "journal-article" @default.
- W3137730786 hasAuthorship W3137730786A5016440729 @default.
- W3137730786 hasAuthorship W3137730786A5019204513 @default.
- W3137730786 hasAuthorship W3137730786A5023770858 @default.
- W3137730786 hasAuthorship W3137730786A5024581793 @default.
- W3137730786 hasAuthorship W3137730786A5030247543 @default.
- W3137730786 hasAuthorship W3137730786A5061185295 @default.
- W3137730786 hasAuthorship W3137730786A5064359106 @default.
- W3137730786 hasAuthorship W3137730786A5086461942 @default.
- W3137730786 hasBestOaLocation W31377307861 @default.
- W3137730786 hasConcept C117220453 @default.
- W3137730786 hasConcept C119857082 @default.
- W3137730786 hasConcept C121608353 @default.
- W3137730786 hasConcept C12267149 @default.
- W3137730786 hasConcept C126322002 @default.
- W3137730786 hasConcept C126838900 @default.
- W3137730786 hasConcept C151956035 @default.
- W3137730786 hasConcept C154945302 @default.
- W3137730786 hasConcept C2524010 @default.
- W3137730786 hasConcept C2775842073 @default.
- W3137730786 hasConcept C2778559731 @default.
- W3137730786 hasConcept C2780192828 @default.
- W3137730786 hasConcept C2989005 @default.
- W3137730786 hasConcept C33923547 @default.
- W3137730786 hasConcept C41008148 @default.
- W3137730786 hasConcept C71924100 @default.
- W3137730786 hasConceptScore W3137730786C117220453 @default.
- W3137730786 hasConceptScore W3137730786C119857082 @default.
- W3137730786 hasConceptScore W3137730786C121608353 @default.
- W3137730786 hasConceptScore W3137730786C12267149 @default.
- W3137730786 hasConceptScore W3137730786C126322002 @default.
- W3137730786 hasConceptScore W3137730786C126838900 @default.
- W3137730786 hasConceptScore W3137730786C151956035 @default.
- W3137730786 hasConceptScore W3137730786C154945302 @default.
- W3137730786 hasConceptScore W3137730786C2524010 @default.
- W3137730786 hasConceptScore W3137730786C2775842073 @default.
- W3137730786 hasConceptScore W3137730786C2778559731 @default.
- W3137730786 hasConceptScore W3137730786C2780192828 @default.
- W3137730786 hasConceptScore W3137730786C2989005 @default.
- W3137730786 hasConceptScore W3137730786C33923547 @default.
- W3137730786 hasConceptScore W3137730786C41008148 @default.
- W3137730786 hasConceptScore W3137730786C71924100 @default.
- W3137730786 hasIssue "9" @default.
- W3137730786 hasLocation W31377307861 @default.
- W3137730786 hasLocation W31377307862 @default.
- W3137730786 hasLocation W31377307863 @default.
- W3137730786 hasOpenAccess W3137730786 @default.
- W3137730786 hasPrimaryLocation W31377307861 @default.
- W3137730786 hasRelatedWork W1996541855 @default.
- W3137730786 hasRelatedWork W2101819884 @default.
- W3137730786 hasRelatedWork W2803710604 @default.
- W3137730786 hasRelatedWork W2937631562 @default.
- W3137730786 hasRelatedWork W2979979539 @default.
- W3137730786 hasRelatedWork W3127425528 @default.
- W3137730786 hasRelatedWork W3136979370 @default.
- W3137730786 hasRelatedWork W3194539120 @default.