Matches in SemOpenAlex for { <https://semopenalex.org/work/W3137746357> ?p ?o ?g. }
- W3137746357 endingPage "107282" @default.
- W3137746357 startingPage "107282" @default.
- W3137746357 abstract "Hydrological models play a crucial role in water planning and decision making. Machine Learning-based models showed several drawbacks for frequent high and a wide range of streamflow records. These models also experience problems during the training process such as over-fitting or trapping in searching for global optima To overcome these limitations, the current study attempts to hybridize the recently developed physics-inspired metaheuristic algorithms (MHAs) such as Equilibrium Optimization (EO), Henry Gases Solubility Optimization (HGSO), and Nuclear Reaction Optimization(NRO) with Multi-layer Perceptron (MLP). These models’ accuracy will be inspected to solve the streamflow forecasting problem where the streamflow dataset was collected through 130 years from a station located on the High Aswan Dam (HAD). The performance of proposed models then will be compared with two traditional neural network models(MLP and RNN), and nine well-known hybrid MLP-based models belong to the different branches of the metaheuristic field (evolutionary group, swarm group, and physics group). The internal parameters of the proposed models will be initialized and optimized. Different performance metrics will be used to examine the performance of the proposed models. The stability of the proposed models and the convergence speed will be evaluated. Finally, ranking these models based on different performance evaluations will be carried out. The results show that the models in the group of Physics-MLP are more reliable in capturing the streamflow patterns, followed by the Swarm-MLP group and then by the Evolutionary-MLP group. Finally, among the all employed methods, the NRO has the best accuracy with the lowest RMSE(2.35), MAE(1.356), MAPE(16.747), and the highest WI(0.957), R(0.924), and confidence in forecasting the streamflow of Aswan High Dam. It can be concluded that augmenting the NRO algorithm with MLP can be a reliable tool in forecasting the monthly streamflow with a high level of precision, speed convergence, and high constancy level. • Develop an improved hybrid Machine Learning model for streamflow forecasting. • Augment MLP model with three physics-inspired metaheuristics algorithms. • Hybridized (Hybrid-MLP) models more reliable than standalone (MLP and RNN) models. • Physics-based hybrid models outperformed evolutionary-based and swarm-based models. • NRO-MLP is reliable in terms of prediction accuracy, convergence, and stability." @default.
- W3137746357 created "2021-03-29" @default.
- W3137746357 creator A5010789167 @default.
- W3137746357 creator A5016315589 @default.
- W3137746357 creator A5048448464 @default.
- W3137746357 creator A5051717915 @default.
- W3137746357 creator A5056325261 @default.
- W3137746357 creator A5056915874 @default.
- W3137746357 date "2021-07-01" @default.
- W3137746357 modified "2023-10-17" @default.
- W3137746357 title "A comprehensive comparison of recent developed meta-heuristic algorithms for streamflow time series forecasting problem" @default.
- W3137746357 cites W1102883814 @default.
- W3137746357 cites W1909566735 @default.
- W3137746357 cites W1983362686 @default.
- W3137746357 cites W1984130668 @default.
- W3137746357 cites W1985460844 @default.
- W3137746357 cites W1990966828 @default.
- W3137746357 cites W2001979953 @default.
- W3137746357 cites W2006694777 @default.
- W3137746357 cites W2031183907 @default.
- W3137746357 cites W2033731173 @default.
- W3137746357 cites W2055417902 @default.
- W3137746357 cites W2056811412 @default.
- W3137746357 cites W2061438946 @default.
- W3137746357 cites W2093195672 @default.
- W3137746357 cites W2126050191 @default.
- W3137746357 cites W2130068839 @default.
- W3137746357 cites W2165683014 @default.
- W3137746357 cites W2178055113 @default.
- W3137746357 cites W2237685256 @default.
- W3137746357 cites W2254345962 @default.
- W3137746357 cites W2290883490 @default.
- W3137746357 cites W2306115793 @default.
- W3137746357 cites W2347140512 @default.
- W3137746357 cites W2465078833 @default.
- W3137746357 cites W2474919847 @default.
- W3137746357 cites W2553852618 @default.
- W3137746357 cites W2572939427 @default.
- W3137746357 cites W2585392941 @default.
- W3137746357 cites W2604319603 @default.
- W3137746357 cites W2606276573 @default.
- W3137746357 cites W2616100520 @default.
- W3137746357 cites W2617638177 @default.
- W3137746357 cites W2737792314 @default.
- W3137746357 cites W2738900493 @default.
- W3137746357 cites W2753179649 @default.
- W3137746357 cites W2759406484 @default.
- W3137746357 cites W2791899797 @default.
- W3137746357 cites W2792703144 @default.
- W3137746357 cites W2793758168 @default.
- W3137746357 cites W2884932540 @default.
- W3137746357 cites W2885309195 @default.
- W3137746357 cites W2889545660 @default.
- W3137746357 cites W2894434542 @default.
- W3137746357 cites W2902421512 @default.
- W3137746357 cites W2903425314 @default.
- W3137746357 cites W2904998808 @default.
- W3137746357 cites W2914717758 @default.
- W3137746357 cites W2919979744 @default.
- W3137746357 cites W2921893399 @default.
- W3137746357 cites W2943528199 @default.
- W3137746357 cites W2944829093 @default.
- W3137746357 cites W2947397189 @default.
- W3137746357 cites W2947446818 @default.
- W3137746357 cites W2954027276 @default.
- W3137746357 cites W2955483811 @default.
- W3137746357 cites W2962182762 @default.
- W3137746357 cites W2962996339 @default.
- W3137746357 cites W2970790537 @default.
- W3137746357 cites W2982453621 @default.
- W3137746357 cites W2984148632 @default.
- W3137746357 cites W2985845430 @default.
- W3137746357 cites W2989603874 @default.
- W3137746357 cites W2989916071 @default.
- W3137746357 cites W2990157348 @default.
- W3137746357 cites W2995748937 @default.
- W3137746357 cites W2996616347 @default.
- W3137746357 cites W2998553334 @default.
- W3137746357 cites W3000284738 @default.
- W3137746357 cites W3002229880 @default.
- W3137746357 cites W3007040893 @default.
- W3137746357 cites W3010181212 @default.
- W3137746357 cites W3011104345 @default.
- W3137746357 cites W3011584394 @default.
- W3137746357 cites W3012857303 @default.
- W3137746357 cites W3013831719 @default.
- W3137746357 cites W3016043885 @default.
- W3137746357 cites W3017038083 @default.
- W3137746357 cites W3017885413 @default.
- W3137746357 cites W3020688348 @default.
- W3137746357 cites W3023280725 @default.
- W3137746357 cites W3027440088 @default.
- W3137746357 cites W3036007513 @default.
- W3137746357 cites W3036977364 @default.
- W3137746357 cites W3039137888 @default.
- W3137746357 cites W3040507935 @default.
- W3137746357 cites W3048827138 @default.
- W3137746357 cites W3081889057 @default.