Matches in SemOpenAlex for { <https://semopenalex.org/work/W3137777844> ?p ?o ?g. }
- W3137777844 endingPage "3443" @default.
- W3137777844 startingPage "3432" @default.
- W3137777844 abstract "To test the performances of native and tumour to liver ratio (TLR) radiomic features extracted from pre-treatment 2-[18F] fluoro-2-deoxy-D-glucose ([18F]FDG) PET/CT and combined with machine learning (ML) for predicting cancer recurrence in patients with locally advanced cervical cancer (LACC).One hundred fifty-eight patients with LACC from multiple centers were retrospectively included in the study. Tumours were segmented using the Fuzzy Local Adaptive Bayesian (FLAB) algorithm. Radiomic features were extracted from the tumours and from regions drawn over the normal liver. Cox proportional hazard model was used to test statistical significance of clinical and radiomic features. Fivefold cross validation was used to tune the number of features. Seven different feature selection methods and four classifiers were tested. The models with the selected features were trained using bootstrapping and tested in data from each scanner independently. Reproducibility of radiomics features, clinical data added value and effect of ComBat-based harmonisation were evaluated across scanners.After a median follow-up of 23 months, 29% of the patients recurred. No individual radiomic or clinical features were significantly associated with cancer recurrence. The best model was obtained using 10 TLR features combined with clinical information. The area under the curve (AUC), F1-score, precision and recall were respectively 0.78 (0.67-0.88), 0.49 (0.25-0.67), 0.42 (0.25-0.60) and 0.63 (0.20-0.80). ComBat did not improve the predictive performance of the best models. Both the TLR and the native models performance varied across scanners used in the test set.[18F]FDG PET radiomic features combined with ML add relevant information to the standard clinical parameters in terms of LACC patient's outcome but remain subject to variability across PET/CT devices." @default.
- W3137777844 created "2021-03-29" @default.
- W3137777844 creator A5005633020 @default.
- W3137777844 creator A5007574901 @default.
- W3137777844 creator A5007752240 @default.
- W3137777844 creator A5010886054 @default.
- W3137777844 creator A5013536844 @default.
- W3137777844 creator A5015007361 @default.
- W3137777844 creator A5017138072 @default.
- W3137777844 creator A5024267268 @default.
- W3137777844 creator A5034326813 @default.
- W3137777844 creator A5044303463 @default.
- W3137777844 creator A5050179360 @default.
- W3137777844 creator A5055844896 @default.
- W3137777844 creator A5058987737 @default.
- W3137777844 creator A5062137018 @default.
- W3137777844 creator A5065371356 @default.
- W3137777844 creator A5080256846 @default.
- W3137777844 creator A5086419862 @default.
- W3137777844 date "2021-03-26" @default.
- W3137777844 modified "2023-10-15" @default.
- W3137777844 title "[18F]FDG PET radiomics to predict disease-free survival in cervical cancer: a multi-scanner/center study with external validation" @default.
- W3137777844 cites W1408981388 @default.
- W3137777844 cites W1757407923 @default.
- W3137777844 cites W2019694480 @default.
- W3137777844 cites W2041112729 @default.
- W3137777844 cites W2103004421 @default.
- W3137777844 cites W2107665951 @default.
- W3137777844 cites W2128739912 @default.
- W3137777844 cites W2138550445 @default.
- W3137777844 cites W2146787063 @default.
- W3137777844 cites W2148846361 @default.
- W3137777844 cites W2154053567 @default.
- W3137777844 cites W2156835537 @default.
- W3137777844 cites W2467148344 @default.
- W3137777844 cites W2579949149 @default.
- W3137777844 cites W2617036670 @default.
- W3137777844 cites W2746548089 @default.
- W3137777844 cites W2755129255 @default.
- W3137777844 cites W2756818491 @default.
- W3137777844 cites W2761033249 @default.
- W3137777844 cites W2763355946 @default.
- W3137777844 cites W2763907409 @default.
- W3137777844 cites W2765456966 @default.
- W3137777844 cites W2772537473 @default.
- W3137777844 cites W2773727367 @default.
- W3137777844 cites W2781993955 @default.
- W3137777844 cites W2788437623 @default.
- W3137777844 cites W2792300427 @default.
- W3137777844 cites W2794199301 @default.
- W3137777844 cites W2801564336 @default.
- W3137777844 cites W2804079537 @default.
- W3137777844 cites W2807211466 @default.
- W3137777844 cites W2883172135 @default.
- W3137777844 cites W2895227855 @default.
- W3137777844 cites W2903595815 @default.
- W3137777844 cites W2908343322 @default.
- W3137777844 cites W2914520292 @default.
- W3137777844 cites W2918173796 @default.
- W3137777844 cites W2938753023 @default.
- W3137777844 cites W2940487144 @default.
- W3137777844 cites W2943162041 @default.
- W3137777844 cites W2947765753 @default.
- W3137777844 cites W2948635447 @default.
- W3137777844 cites W2950030754 @default.
- W3137777844 cites W2950535890 @default.
- W3137777844 cites W2954495564 @default.
- W3137777844 cites W2955393467 @default.
- W3137777844 cites W2969655192 @default.
- W3137777844 cites W2987738617 @default.
- W3137777844 cites W2998789541 @default.
- W3137777844 cites W2999861389 @default.
- W3137777844 cites W3034412830 @default.
- W3137777844 cites W3038062368 @default.
- W3137777844 cites W3039553495 @default.
- W3137777844 cites W3092407204 @default.
- W3137777844 cites W3101133167 @default.
- W3137777844 cites W4225906504 @default.
- W3137777844 cites W4230429131 @default.
- W3137777844 cites W4233026002 @default.
- W3137777844 cites W4233442645 @default.
- W3137777844 cites W91190913 @default.
- W3137777844 doi "https://doi.org/10.1007/s00259-021-05303-5" @default.
- W3137777844 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8440297" @default.
- W3137777844 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34037832" @default.
- W3137777844 hasPublicationYear "2021" @default.
- W3137777844 type Work @default.
- W3137777844 sameAs 3137777844 @default.
- W3137777844 citedByCount "27" @default.
- W3137777844 countsByYear W31377778442021 @default.
- W3137777844 countsByYear W31377778442022 @default.
- W3137777844 countsByYear W31377778442023 @default.
- W3137777844 crossrefType "journal-article" @default.
- W3137777844 hasAuthorship W3137777844A5005633020 @default.
- W3137777844 hasAuthorship W3137777844A5007574901 @default.
- W3137777844 hasAuthorship W3137777844A5007752240 @default.
- W3137777844 hasAuthorship W3137777844A5010886054 @default.
- W3137777844 hasAuthorship W3137777844A5013536844 @default.