Matches in SemOpenAlex for { <https://semopenalex.org/work/W3137803016> ?p ?o ?g. }
- W3137803016 endingPage "3777" @default.
- W3137803016 startingPage "3766" @default.
- W3137803016 abstract "Wetting of multiphase alloys and their composites depends on multiple parameters, and these relationships are difficult to predict from first principles only. We study correlations between the composition, surface finish, and microstructure of Al–Si alloys (Si content 7–50%) and Al metal matrix composites (MMCs) with graphite (Gr), NiAl3, and SiC and the water contact angle (CA) experimentally, theoretically, and with machine learning (ML) techniques. Their surface properties were modified by mechanical abrasion, etching, and addition of alloying elements. An ML approach was developed to investigate correlations between the predictor variables (properties of the materials) and the CA. Theoretical models of wetting of rough surfaces (Wenzel, Cassie–Baxter, and their modifications) do not fully capture the CA, while ML models follow the experimental values. A full factorial design is utilized with combinations of all levels of the predictor factors (grit size, silicon percentage, droplet size, elapsed time, etching, reinforcing particles). To map the predictor variables to the response variables, 409 experimental data points were applied to train and test various supervised ML models, namely, regression, artificial neural network (ANN), chi-square automatic interaction detection (CHAID), extreme gradient boosting (XGBoost), and random forest. The correlations between the most significant factors and CA are explored through visualization techniques. The most accurately trained model shows a strong positive linear correlation (r > 0.9) between predicted and observed CA values in the test set, indicating the robustness of the model. The experimental measurements and artificial intelligence results demonstrate that CA increases following mechanically abrading the surface, etching, and adding Gr to the surface. The ML methods are promising to predict wetting properties and to provide a deeper understanding of the physical phenomena associated with the wettability of metallic alloys and their metal matrix composites." @default.
- W3137803016 created "2021-03-29" @default.
- W3137803016 creator A5003001653 @default.
- W3137803016 creator A5024851586 @default.
- W3137803016 creator A5032131820 @default.
- W3137803016 creator A5048464912 @default.
- W3137803016 creator A5063589888 @default.
- W3137803016 date "2021-03-17" @default.
- W3137803016 modified "2023-09-29" @default.
- W3137803016 title "Predictive Analysis of Wettability of Al–Si Based Multiphase Alloys and Aluminum Matrix Composites by Machine Learning and Physical Modeling" @default.
- W3137803016 cites W1754646357 @default.
- W3137803016 cites W1967690898 @default.
- W3137803016 cites W1969565648 @default.
- W3137803016 cites W1975140804 @default.
- W3137803016 cites W1977987352 @default.
- W3137803016 cites W1979038481 @default.
- W3137803016 cites W1979245488 @default.
- W3137803016 cites W1981910082 @default.
- W3137803016 cites W1983647679 @default.
- W3137803016 cites W1983920521 @default.
- W3137803016 cites W2000824272 @default.
- W3137803016 cites W2002773082 @default.
- W3137803016 cites W2004786570 @default.
- W3137803016 cites W2005330042 @default.
- W3137803016 cites W2005440881 @default.
- W3137803016 cites W2013129387 @default.
- W3137803016 cites W2014888980 @default.
- W3137803016 cites W2016329673 @default.
- W3137803016 cites W2023679097 @default.
- W3137803016 cites W2028222924 @default.
- W3137803016 cites W2032039692 @default.
- W3137803016 cites W2042431181 @default.
- W3137803016 cites W2050301835 @default.
- W3137803016 cites W2051035892 @default.
- W3137803016 cites W2059327711 @default.
- W3137803016 cites W2065953822 @default.
- W3137803016 cites W2067117439 @default.
- W3137803016 cites W2069452135 @default.
- W3137803016 cites W2074250456 @default.
- W3137803016 cites W2087864331 @default.
- W3137803016 cites W2091182580 @default.
- W3137803016 cites W2091615129 @default.
- W3137803016 cites W2094690382 @default.
- W3137803016 cites W2121149765 @default.
- W3137803016 cites W2124165133 @default.
- W3137803016 cites W2132132263 @default.
- W3137803016 cites W2146772193 @default.
- W3137803016 cites W2152123134 @default.
- W3137803016 cites W2154255972 @default.
- W3137803016 cites W2156004788 @default.
- W3137803016 cites W2162066688 @default.
- W3137803016 cites W2197485282 @default.
- W3137803016 cites W2290338631 @default.
- W3137803016 cites W2318484705 @default.
- W3137803016 cites W2322095966 @default.
- W3137803016 cites W2786589993 @default.
- W3137803016 cites W2806711674 @default.
- W3137803016 cites W2884690073 @default.
- W3137803016 cites W2892074017 @default.
- W3137803016 cites W2947352956 @default.
- W3137803016 cites W2980720463 @default.
- W3137803016 cites W2985699183 @default.
- W3137803016 cites W3000155469 @default.
- W3137803016 cites W3003956192 @default.
- W3137803016 cites W3015120507 @default.
- W3137803016 cites W3028509971 @default.
- W3137803016 cites W3030560753 @default.
- W3137803016 cites W3035863322 @default.
- W3137803016 cites W4238664463 @default.
- W3137803016 cites W4296453357 @default.
- W3137803016 doi "https://doi.org/10.1021/acs.langmuir.1c00358" @default.
- W3137803016 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33730496" @default.
- W3137803016 hasPublicationYear "2021" @default.
- W3137803016 type Work @default.
- W3137803016 sameAs 3137803016 @default.
- W3137803016 citedByCount "14" @default.
- W3137803016 countsByYear W31378030162021 @default.
- W3137803016 countsByYear W31378030162022 @default.
- W3137803016 countsByYear W31378030162023 @default.
- W3137803016 crossrefType "journal-article" @default.
- W3137803016 hasAuthorship W3137803016A5003001653 @default.
- W3137803016 hasAuthorship W3137803016A5024851586 @default.
- W3137803016 hasAuthorship W3137803016A5032131820 @default.
- W3137803016 hasAuthorship W3137803016A5048464912 @default.
- W3137803016 hasAuthorship W3137803016A5063589888 @default.
- W3137803016 hasConcept C107365816 @default.
- W3137803016 hasConcept C119857082 @default.
- W3137803016 hasConcept C134514944 @default.
- W3137803016 hasConcept C159985019 @default.
- W3137803016 hasConcept C169222746 @default.
- W3137803016 hasConcept C192562407 @default.
- W3137803016 hasConcept C2780722187 @default.
- W3137803016 hasConcept C41008148 @default.
- W3137803016 hasConcept C48921125 @default.
- W3137803016 hasConcept C513153333 @default.
- W3137803016 hasConcept C6556556 @default.
- W3137803016 hasConcept C71039073 @default.
- W3137803016 hasConceptScore W3137803016C107365816 @default.