Matches in SemOpenAlex for { <https://semopenalex.org/work/W3137837897> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W3137837897 abstract "Background: Merkel cell carcinoma (MCC) is an exceedingly lethal cutaneous neoplasm with highly controversial origin and a stiffly rising incidence. Immunotherapies, including checkpoint blockade (CPB), have shown some benefit in advanced-stage or chemotherapy-resistant MCC, but the performance has been at best erratic. The aim of the study was to establish the transcriptomic profiling of advanced MCC, as well as tumor infiltrating immune cell profiles using sophisticated the meta-analytic machine learning (MAML) method. Methods: Using an ML algorithm the authors trained our model to select consensus features that may be used to differentiate metastatic MCC from primary lesions. We then proceeded to validate and fine-tune the model’s performance with an assortment of probabilistic tools. Findings: We successfully extracted 98 core gene features for metastatic lesions with a superb accuracy, as shown by the AUROC of 0·905 (95% CI, 0·848-0.962) and AUPRC of 0·919 on leave-one-out cross validation. More significantly, our algorithm also identified core pathways with non-zero pathway dysregulation coefficients. The performance metrics for pathway analysis proved to be comparable to those for genes, with the AUROC of 0·888 (95% CI, 0·825, 0·950) and AUPRC of 0·842. Intriguingly, a significant reduction of monocyte-macrophage subpopulation was observed on cell enrichment-based immune profiling, a finding we substantiated through a deconvolution-based method. Interpretation: We have built a predictive model to find a reliable set of gene features in metastatic MCC, and successfully demonstrated both up- and down-regulated genes and pathways with non-zero coefficients, which provide a framework for new prospective targets in checkpoint blockade therapy. The excellent performance of the model points to the value and potential of MAML, an eclectic mixture of MA and predictive ML modelling. Funding Statement: This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2019R1F1A1062023).Declaration of Interests: The authors declare no conflicts of interest regarding the contents of this article." @default.
- W3137837897 created "2021-03-29" @default.
- W3137837897 creator A5054707679 @default.
- W3137837897 creator A5077104820 @default.
- W3137837897 date "2021-01-01" @default.
- W3137837897 modified "2023-09-30" @default.
- W3137837897 title "Suppressed Macrophage Responses in Metastatic Merkel Cell Carcinoma: Mining of Core Expression Features by Meta-Analytic Machine Learning (MAML)" @default.
- W3137837897 doi "https://doi.org/10.2139/ssrn.3790452" @default.
- W3137837897 hasPublicationYear "2021" @default.
- W3137837897 type Work @default.
- W3137837897 sameAs 3137837897 @default.
- W3137837897 citedByCount "0" @default.
- W3137837897 crossrefType "journal-article" @default.
- W3137837897 hasAuthorship W3137837897A5054707679 @default.
- W3137837897 hasAuthorship W3137837897A5077104820 @default.
- W3137837897 hasConcept C104317684 @default.
- W3137837897 hasConcept C119857082 @default.
- W3137837897 hasConcept C121608353 @default.
- W3137837897 hasConcept C126322002 @default.
- W3137837897 hasConcept C143998085 @default.
- W3137837897 hasConcept C150194340 @default.
- W3137837897 hasConcept C154945302 @default.
- W3137837897 hasConcept C162317418 @default.
- W3137837897 hasConcept C18431079 @default.
- W3137837897 hasConcept C2777546739 @default.
- W3137837897 hasConcept C2777701055 @default.
- W3137837897 hasConcept C2778342957 @default.
- W3137837897 hasConcept C2780851360 @default.
- W3137837897 hasConcept C41008148 @default.
- W3137837897 hasConcept C502942594 @default.
- W3137837897 hasConcept C50382708 @default.
- W3137837897 hasConcept C55493867 @default.
- W3137837897 hasConcept C70721500 @default.
- W3137837897 hasConcept C71924100 @default.
- W3137837897 hasConcept C86803240 @default.
- W3137837897 hasConceptScore W3137837897C104317684 @default.
- W3137837897 hasConceptScore W3137837897C119857082 @default.
- W3137837897 hasConceptScore W3137837897C121608353 @default.
- W3137837897 hasConceptScore W3137837897C126322002 @default.
- W3137837897 hasConceptScore W3137837897C143998085 @default.
- W3137837897 hasConceptScore W3137837897C150194340 @default.
- W3137837897 hasConceptScore W3137837897C154945302 @default.
- W3137837897 hasConceptScore W3137837897C162317418 @default.
- W3137837897 hasConceptScore W3137837897C18431079 @default.
- W3137837897 hasConceptScore W3137837897C2777546739 @default.
- W3137837897 hasConceptScore W3137837897C2777701055 @default.
- W3137837897 hasConceptScore W3137837897C2778342957 @default.
- W3137837897 hasConceptScore W3137837897C2780851360 @default.
- W3137837897 hasConceptScore W3137837897C41008148 @default.
- W3137837897 hasConceptScore W3137837897C502942594 @default.
- W3137837897 hasConceptScore W3137837897C50382708 @default.
- W3137837897 hasConceptScore W3137837897C55493867 @default.
- W3137837897 hasConceptScore W3137837897C70721500 @default.
- W3137837897 hasConceptScore W3137837897C71924100 @default.
- W3137837897 hasConceptScore W3137837897C86803240 @default.
- W3137837897 hasLocation W31378378971 @default.
- W3137837897 hasOpenAccess W3137837897 @default.
- W3137837897 hasPrimaryLocation W31378378971 @default.
- W3137837897 hasRelatedWork W1306813 @default.
- W3137837897 hasRelatedWork W1437423 @default.
- W3137837897 hasRelatedWork W1454762 @default.
- W3137837897 hasRelatedWork W3858741 @default.
- W3137837897 hasRelatedWork W4179840 @default.
- W3137837897 hasRelatedWork W5683678 @default.
- W3137837897 hasRelatedWork W5813897 @default.
- W3137837897 hasRelatedWork W6655772 @default.
- W3137837897 hasRelatedWork W8010423 @default.
- W3137837897 hasRelatedWork W8650861 @default.
- W3137837897 isParatext "false" @default.
- W3137837897 isRetracted "false" @default.
- W3137837897 magId "3137837897" @default.
- W3137837897 workType "article" @default.