Matches in SemOpenAlex for { <https://semopenalex.org/work/W3137858141> ?p ?o ?g. }
- W3137858141 abstract "Abstract Prediction is one the last frontiers in ecology. Indeed, predicting fine scale species composition in natural systems is a complex challenge as multiple abiotic and biotic processes operate simultaneously to determine local species abundances. On the one hand, species intrinsic performance and their tolerance limits to different abiotic pressures modulate species abundances. On the other hand there is growing recognition that species interactions play an equally important role in limiting or promoting such abundances within ecological communities. Here, we present a joint effort between ecologists and data scientists to use data-driven models informed by ecological deterministic processes to predict species abundances using reasonably easy to obtain data. To overcome the classical procedure in ecology of parameterizing complex population models of multiple species interactions and poor predictive power, we followed instead a sequential data-driven modeling approach. We use this framework to predict species abundances over 5 years in a highly diverse annual plant community. Our models show a surprisingly high spatial predictive accuracy (RSE ~ 0.13) using only easy to measure variables in the field, yet such predictive power is lost when temporal dynamics are taken into account. This result suggest that predicting the temporal dimension of our system requires longer time series data. Such data would likely capture additional sources of variability that determine temporal patterns of species abundances. In addition, we show that these data-driven models can also inform back mechanistic models of important missing variables that affect species performance such as particular soil conditions (e.g. carbonate availability in our case). Being able to gain predictive power at fine-scale species composition while maintaining a mechanistic understanding of the underlying processes can be a pivotal tool for conservation, specially given the human induced rapid environmental changes we are experiencing. Here, we document how this objective can be achieved by promoting the interplay between classic modelling approaches in ecology and recently developed data-driven models. Author summary Prediction is challenging but recently developed machine learning techniques allow to dramatically improve prediction accuracy in several domains. However, these tools are often of little application in ecology due to the complexity of gathering information on the needed explanatory variables, which often comprise not only physical variables such as temperature or soil nutrients, but also information about the complex network of species interactions regulating species abundances. Here we present a two-step sequential modelling framework that overcomes these constraints. We first infer potential species abundances training models just with easily obtained abiotic variables, and then use this outcome to fine-tune the prediction of the realized species abundances when taking into account the rest of the predicted species in the community. Overall, our results show a promising way forward for fine scale prediction in ecology." @default.
- W3137858141 created "2021-03-29" @default.
- W3137858141 creator A5012469759 @default.
- W3137858141 creator A5021294770 @default.
- W3137858141 creator A5026267991 @default.
- W3137858141 creator A5039229867 @default.
- W3137858141 creator A5052447168 @default.
- W3137858141 creator A5086620773 @default.
- W3137858141 date "2021-03-24" @default.
- W3137858141 modified "2023-10-01" @default.
- W3137858141 title "Fine scale prediction of ecological community composition using a two-step sequential machine learning ensemble" @default.
- W3137858141 cites W1529355025 @default.
- W3137858141 cites W1678356000 @default.
- W3137858141 cites W1822522035 @default.
- W3137858141 cites W1967360417 @default.
- W3137858141 cites W1988195734 @default.
- W3137858141 cites W1989338016 @default.
- W3137858141 cites W2005578818 @default.
- W3137858141 cites W2007178835 @default.
- W3137858141 cites W2025992337 @default.
- W3137858141 cites W2028013538 @default.
- W3137858141 cites W2083360316 @default.
- W3137858141 cites W2095390342 @default.
- W3137858141 cites W2097601813 @default.
- W3137858141 cites W2098000995 @default.
- W3137858141 cites W2098827790 @default.
- W3137858141 cites W2102636708 @default.
- W3137858141 cites W2131661345 @default.
- W3137858141 cites W2135695572 @default.
- W3137858141 cites W2140575676 @default.
- W3137858141 cites W2148143831 @default.
- W3137858141 cites W2149060829 @default.
- W3137858141 cites W2150597302 @default.
- W3137858141 cites W2507708273 @default.
- W3137858141 cites W2510796315 @default.
- W3137858141 cites W2582730731 @default.
- W3137858141 cites W2594522819 @default.
- W3137858141 cites W2606411644 @default.
- W3137858141 cites W2616923088 @default.
- W3137858141 cites W2620040244 @default.
- W3137858141 cites W2763356991 @default.
- W3137858141 cites W2766814516 @default.
- W3137858141 cites W2786425804 @default.
- W3137858141 cites W2788201494 @default.
- W3137858141 cites W2794778778 @default.
- W3137858141 cites W2883181458 @default.
- W3137858141 cites W2885195579 @default.
- W3137858141 cites W2911964244 @default.
- W3137858141 cites W2912581782 @default.
- W3137858141 cites W2945976633 @default.
- W3137858141 cites W2948600471 @default.
- W3137858141 cites W2951372404 @default.
- W3137858141 cites W2981697131 @default.
- W3137858141 cites W2982337198 @default.
- W3137858141 cites W2991619602 @default.
- W3137858141 cites W2994701726 @default.
- W3137858141 cites W3039811531 @default.
- W3137858141 cites W3048083301 @default.
- W3137858141 cites W3048461476 @default.
- W3137858141 cites W3102476541 @default.
- W3137858141 cites W3127970007 @default.
- W3137858141 cites W3137622847 @default.
- W3137858141 cites W3139583392 @default.
- W3137858141 doi "https://doi.org/10.1101/2021.03.24.436771" @default.
- W3137858141 hasPublicationYear "2021" @default.
- W3137858141 type Work @default.
- W3137858141 sameAs 3137858141 @default.
- W3137858141 citedByCount "3" @default.
- W3137858141 countsByYear W31378581412022 @default.
- W3137858141 countsByYear W31378581412023 @default.
- W3137858141 crossrefType "posted-content" @default.
- W3137858141 hasAuthorship W3137858141A5012469759 @default.
- W3137858141 hasAuthorship W3137858141A5021294770 @default.
- W3137858141 hasAuthorship W3137858141A5026267991 @default.
- W3137858141 hasAuthorship W3137858141A5039229867 @default.
- W3137858141 hasAuthorship W3137858141A5052447168 @default.
- W3137858141 hasAuthorship W3137858141A5086620773 @default.
- W3137858141 hasBestOaLocation W31378581411 @default.
- W3137858141 hasConcept C110872660 @default.
- W3137858141 hasConcept C111472728 @default.
- W3137858141 hasConcept C119857082 @default.
- W3137858141 hasConcept C132215390 @default.
- W3137858141 hasConcept C138885662 @default.
- W3137858141 hasConcept C144024400 @default.
- W3137858141 hasConcept C149923435 @default.
- W3137858141 hasConcept C18903297 @default.
- W3137858141 hasConcept C205649164 @default.
- W3137858141 hasConcept C2777489503 @default.
- W3137858141 hasConcept C2778136018 @default.
- W3137858141 hasConcept C2778755073 @default.
- W3137858141 hasConcept C2908647359 @default.
- W3137858141 hasConcept C41008148 @default.
- W3137858141 hasConcept C45804977 @default.
- W3137858141 hasConcept C4590074 @default.
- W3137858141 hasConcept C58640448 @default.
- W3137858141 hasConcept C77077793 @default.
- W3137858141 hasConcept C86803240 @default.
- W3137858141 hasConceptScore W3137858141C110872660 @default.
- W3137858141 hasConceptScore W3137858141C111472728 @default.
- W3137858141 hasConceptScore W3137858141C119857082 @default.