Matches in SemOpenAlex for { <https://semopenalex.org/work/W3137863504> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W3137863504 abstract "It is a classical fact that domains of convergence of power series of several complex variables are characterized as logarithmically convex complete Reinhardt domains; let $D subsetneq mathbb{C}^N$ be such a domain. We show that a necessary as well as sufficient condition for a power series $g$ to have $D$ as its domain of convergence is that it admits a certain decomposition into elementary power series; specifically, $g$ can be expressed as a sum of a sequence of power series $g_n$ with the property that each of the logarithmic images $G_n$ of their domains of convergence are half-spaces, all containing the logarithmic image $G$ of $D$ and such that the largest open subset of $mathbb{C}^N$ on which all the $g_n$'s and $g$ converge absolutely is $D$. In short, every power series admits a decomposition into elementary power series. The proof of this leads to a new way of arriving at a constructive proof of the aforementioned classical fact. This proof inturn leads to another decomposition result in which the $G_n$'s are now wedges formed by intersections of pairs of {it supporting} half-spaces of $G$. Along the way, we also show that in each fiber of the restriction of the absolute map to the boundary of the domain of convergence of $g$, there exists a singular point of $g$." @default.
- W3137863504 created "2021-03-29" @default.
- W3137863504 creator A5063993104 @default.
- W3137863504 date "2021-03-25" @default.
- W3137863504 modified "2023-09-27" @default.
- W3137863504 title "Structure theorems for Power Series in Several Complex Variables" @default.
- W3137863504 cites W1485272308 @default.
- W3137863504 cites W1539394623 @default.
- W3137863504 cites W1992110402 @default.
- W3137863504 cites W2083126667 @default.
- W3137863504 cites W2157869188 @default.
- W3137863504 hasPublicationYear "2021" @default.
- W3137863504 type Work @default.
- W3137863504 sameAs 3137863504 @default.
- W3137863504 citedByCount "0" @default.
- W3137863504 crossrefType "posted-content" @default.
- W3137863504 hasAuthorship W3137863504A5063993104 @default.
- W3137863504 hasConcept C112680207 @default.
- W3137863504 hasConcept C114614502 @default.
- W3137863504 hasConcept C118615104 @default.
- W3137863504 hasConcept C134306372 @default.
- W3137863504 hasConcept C143724316 @default.
- W3137863504 hasConcept C151730666 @default.
- W3137863504 hasConcept C155568369 @default.
- W3137863504 hasConcept C161505775 @default.
- W3137863504 hasConcept C162324750 @default.
- W3137863504 hasConcept C202444582 @default.
- W3137863504 hasConcept C202854965 @default.
- W3137863504 hasConcept C2524010 @default.
- W3137863504 hasConcept C2777303404 @default.
- W3137863504 hasConcept C2778112365 @default.
- W3137863504 hasConcept C33923547 @default.
- W3137863504 hasConcept C36503486 @default.
- W3137863504 hasConcept C39927690 @default.
- W3137863504 hasConcept C50522688 @default.
- W3137863504 hasConcept C54355233 @default.
- W3137863504 hasConcept C62354387 @default.
- W3137863504 hasConcept C73905626 @default.
- W3137863504 hasConcept C86803240 @default.
- W3137863504 hasConceptScore W3137863504C112680207 @default.
- W3137863504 hasConceptScore W3137863504C114614502 @default.
- W3137863504 hasConceptScore W3137863504C118615104 @default.
- W3137863504 hasConceptScore W3137863504C134306372 @default.
- W3137863504 hasConceptScore W3137863504C143724316 @default.
- W3137863504 hasConceptScore W3137863504C151730666 @default.
- W3137863504 hasConceptScore W3137863504C155568369 @default.
- W3137863504 hasConceptScore W3137863504C161505775 @default.
- W3137863504 hasConceptScore W3137863504C162324750 @default.
- W3137863504 hasConceptScore W3137863504C202444582 @default.
- W3137863504 hasConceptScore W3137863504C202854965 @default.
- W3137863504 hasConceptScore W3137863504C2524010 @default.
- W3137863504 hasConceptScore W3137863504C2777303404 @default.
- W3137863504 hasConceptScore W3137863504C2778112365 @default.
- W3137863504 hasConceptScore W3137863504C33923547 @default.
- W3137863504 hasConceptScore W3137863504C36503486 @default.
- W3137863504 hasConceptScore W3137863504C39927690 @default.
- W3137863504 hasConceptScore W3137863504C50522688 @default.
- W3137863504 hasConceptScore W3137863504C54355233 @default.
- W3137863504 hasConceptScore W3137863504C62354387 @default.
- W3137863504 hasConceptScore W3137863504C73905626 @default.
- W3137863504 hasConceptScore W3137863504C86803240 @default.
- W3137863504 hasLocation W31378635041 @default.
- W3137863504 hasOpenAccess W3137863504 @default.
- W3137863504 hasPrimaryLocation W31378635041 @default.
- W3137863504 hasRelatedWork W110970450 @default.
- W3137863504 hasRelatedWork W1593668849 @default.
- W3137863504 hasRelatedWork W1726639925 @default.
- W3137863504 hasRelatedWork W1927751343 @default.
- W3137863504 hasRelatedWork W1976422694 @default.
- W3137863504 hasRelatedWork W2001730203 @default.
- W3137863504 hasRelatedWork W2008407124 @default.
- W3137863504 hasRelatedWork W2013194599 @default.
- W3137863504 hasRelatedWork W2014139634 @default.
- W3137863504 hasRelatedWork W2074471315 @default.
- W3137863504 hasRelatedWork W2084776403 @default.
- W3137863504 hasRelatedWork W2092685560 @default.
- W3137863504 hasRelatedWork W2167898469 @default.
- W3137863504 hasRelatedWork W2168876342 @default.
- W3137863504 hasRelatedWork W2316867427 @default.
- W3137863504 hasRelatedWork W2469332035 @default.
- W3137863504 hasRelatedWork W2537596701 @default.
- W3137863504 hasRelatedWork W2900972024 @default.
- W3137863504 hasRelatedWork W2965064529 @default.
- W3137863504 hasRelatedWork W3033324390 @default.
- W3137863504 isParatext "false" @default.
- W3137863504 isRetracted "false" @default.
- W3137863504 magId "3137863504" @default.
- W3137863504 workType "article" @default.