Matches in SemOpenAlex for { <https://semopenalex.org/work/W3137918107> ?p ?o ?g. }
- W3137918107 endingPage "148" @default.
- W3137918107 startingPage "127" @default.
- W3137918107 abstract "Many social networks exhibit community structure, where individuals form discrete subgroups. The composition of such groupings is important for numerous research directions, but their characterization is challenged by data sampling issues. In wild populations, where individuals range over large distances and observation can be limited, social data required to resolve community structure are difficult to collect. Recent studies used simulated data sets to determine the robustness of individual level network metrics under suboptimal sampling conditions, but the sensitivity of community detection algorithms to imperfect sampling has not been assessed. Here, we used simulated data sets to determine how sampling effort and skew influence the ability of three community detection algorithms (fastgreedy, walktrap and louvain) to recover the ‘true’ community structure of networks under two sampling regimes (field-based observational sampling and sampling through biologgers, e.g. proximity detectors). We also examined the robustness of a measure of uncertainty in estimated community structure (rcom). We based our simulated societies on contact patterns in wild male African elephants, a model system reflecting common sampling challenges of large wild populations. Our results indicate that the accuracy of the algorithms improved with increasing sampling effort and decreasing sampling skew. Under the field sampling regime, when sampling effort is constrained, mid-levels of sampling skew may provide a reasonable compromise between maximizing the mean numbers of observation per individual and minimizing sampling skew. Even with skewed data, rcom can provide a reliable measure of uncertainty in the estimated community assignments, but it should be interpreted cautiously with highly skewed data. The network structures explored represent common sampling challenges for wild populations, but unexplored sampling regimes may drive somewhat different dynamics. Our simulations indicate that adequate sampling even when skewed can be informative and maximization of the number of observations among all individuals should be a general objective." @default.
- W3137918107 created "2021-03-29" @default.
- W3137918107 creator A5014856469 @default.
- W3137918107 creator A5021541034 @default.
- W3137918107 creator A5072381303 @default.
- W3137918107 creator A5083564946 @default.
- W3137918107 date "2021-04-01" @default.
- W3137918107 modified "2023-10-01" @default.
- W3137918107 title "Detecting community structure in wild populations: a simulation study based on male elephant, Loxodonta africana, data" @default.
- W3137918107 cites W1828958803 @default.
- W3137918107 cites W1969348328 @default.
- W3137918107 cites W1971421925 @default.
- W3137918107 cites W1971459665 @default.
- W3137918107 cites W1989633372 @default.
- W3137918107 cites W1992273467 @default.
- W3137918107 cites W2002787888 @default.
- W3137918107 cites W2004049668 @default.
- W3137918107 cites W2027551418 @default.
- W3137918107 cites W2036614090 @default.
- W3137918107 cites W2039705089 @default.
- W3137918107 cites W2042327942 @default.
- W3137918107 cites W2042901984 @default.
- W3137918107 cites W2067241925 @default.
- W3137918107 cites W2074351368 @default.
- W3137918107 cites W2079683703 @default.
- W3137918107 cites W2095293504 @default.
- W3137918107 cites W2102494451 @default.
- W3137918107 cites W2103227323 @default.
- W3137918107 cites W2115770459 @default.
- W3137918107 cites W2120043163 @default.
- W3137918107 cites W2129658697 @default.
- W3137918107 cites W2131681506 @default.
- W3137918107 cites W2133281811 @default.
- W3137918107 cites W2167041577 @default.
- W3137918107 cites W2189943963 @default.
- W3137918107 cites W2211181437 @default.
- W3137918107 cites W2235174110 @default.
- W3137918107 cites W2580382084 @default.
- W3137918107 cites W2592171988 @default.
- W3137918107 cites W2592618553 @default.
- W3137918107 cites W2597104125 @default.
- W3137918107 cites W2604612116 @default.
- W3137918107 cites W2612470377 @default.
- W3137918107 cites W2716375590 @default.
- W3137918107 cites W2735861106 @default.
- W3137918107 cites W2763817723 @default.
- W3137918107 cites W2782973014 @default.
- W3137918107 cites W2805660348 @default.
- W3137918107 cites W2914857245 @default.
- W3137918107 cites W3104267360 @default.
- W3137918107 cites W3106077940 @default.
- W3137918107 doi "https://doi.org/10.1016/j.anbehav.2021.02.008" @default.
- W3137918107 hasPublicationYear "2021" @default.
- W3137918107 type Work @default.
- W3137918107 sameAs 3137918107 @default.
- W3137918107 citedByCount "1" @default.
- W3137918107 countsByYear W31379181072022 @default.
- W3137918107 crossrefType "journal-article" @default.
- W3137918107 hasAuthorship W3137918107A5014856469 @default.
- W3137918107 hasAuthorship W3137918107A5021541034 @default.
- W3137918107 hasAuthorship W3137918107A5072381303 @default.
- W3137918107 hasAuthorship W3137918107A5083564946 @default.
- W3137918107 hasConcept C104317684 @default.
- W3137918107 hasConcept C105795698 @default.
- W3137918107 hasConcept C106399304 @default.
- W3137918107 hasConcept C124101348 @default.
- W3137918107 hasConcept C127413603 @default.
- W3137918107 hasConcept C129848803 @default.
- W3137918107 hasConcept C133079900 @default.
- W3137918107 hasConcept C140779682 @default.
- W3137918107 hasConcept C144024400 @default.
- W3137918107 hasConcept C146978453 @default.
- W3137918107 hasConcept C149923435 @default.
- W3137918107 hasConcept C204323151 @default.
- W3137918107 hasConcept C2908647359 @default.
- W3137918107 hasConcept C33923547 @default.
- W3137918107 hasConcept C41008148 @default.
- W3137918107 hasConcept C43711488 @default.
- W3137918107 hasConcept C55493867 @default.
- W3137918107 hasConcept C63479239 @default.
- W3137918107 hasConcept C75373757 @default.
- W3137918107 hasConcept C75917345 @default.
- W3137918107 hasConcept C76155785 @default.
- W3137918107 hasConcept C86803240 @default.
- W3137918107 hasConcept C94915269 @default.
- W3137918107 hasConceptScore W3137918107C104317684 @default.
- W3137918107 hasConceptScore W3137918107C105795698 @default.
- W3137918107 hasConceptScore W3137918107C106399304 @default.
- W3137918107 hasConceptScore W3137918107C124101348 @default.
- W3137918107 hasConceptScore W3137918107C127413603 @default.
- W3137918107 hasConceptScore W3137918107C129848803 @default.
- W3137918107 hasConceptScore W3137918107C133079900 @default.
- W3137918107 hasConceptScore W3137918107C140779682 @default.
- W3137918107 hasConceptScore W3137918107C144024400 @default.
- W3137918107 hasConceptScore W3137918107C146978453 @default.
- W3137918107 hasConceptScore W3137918107C149923435 @default.
- W3137918107 hasConceptScore W3137918107C204323151 @default.
- W3137918107 hasConceptScore W3137918107C2908647359 @default.