Matches in SemOpenAlex for { <https://semopenalex.org/work/W3138073335> ?p ?o ?g. }
- W3138073335 abstract "Current unsupervised anomaly detection and pixel-wise anomaly localisation systems are commonly formulated as one-class classifiers that depend on an effective estimation of the distribution of normal images and robust criteria to identify anomalies. However, the distribution of normal images estimated by current systems tends to be unstable for classes of normal images that are under-represented in the training set, and the anomaly identification criteria commonly explored in the field does not work well for multi-scale structural and non-structural anomalies. In this paper, we introduce a new unsupervised anomaly detection and localisation method designed to address these two issues. More specifically, we introduce a normal image distribution estimation method that is robust to under-represented classes of normal images -- this method is based on adversarially interpolated descriptors from training images and a Gaussian classifier. We also propose a new anomaly identification criterion that can accurately detect and localise multi-scale structural and non-structural anomalies. In extensive experiments on MNIST, Fashion MNIST, CIFAR10, MVTec AD and two medical datasets, our approach shows better results than the current state of the art in the standard experimental setup for unsupervised anomaly detection and localisation. Code is available at this https URL." @default.
- W3138073335 created "2021-03-29" @default.
- W3138073335 creator A5029215323 @default.
- W3138073335 creator A5039104219 @default.
- W3138073335 creator A5048813928 @default.
- W3138073335 creator A5058617327 @default.
- W3138073335 date "2021-01-25" @default.
- W3138073335 modified "2023-09-27" @default.
- W3138073335 title "Unsupervised Anomaly Detection with Multi-scale Interpolated Gaussian Descriptors" @default.
- W3138073335 cites W1522301498 @default.
- W3138073335 cites W1580389772 @default.
- W3138073335 cites W1663973292 @default.
- W3138073335 cites W1821462560 @default.
- W3138073335 cites W1901129140 @default.
- W3138073335 cites W1957718552 @default.
- W3138073335 cites W1970088130 @default.
- W3138073335 cites W2049633694 @default.
- W3138073335 cites W2099471712 @default.
- W3138073335 cites W2105497548 @default.
- W3138073335 cites W2108598243 @default.
- W3138073335 cites W2123045220 @default.
- W3138073335 cites W2129520225 @default.
- W3138073335 cites W2132870739 @default.
- W3138073335 cites W2133665775 @default.
- W3138073335 cites W2136655611 @default.
- W3138073335 cites W2138375496 @default.
- W3138073335 cites W2138621090 @default.
- W3138073335 cites W2142412278 @default.
- W3138073335 cites W2194550927 @default.
- W3138073335 cites W2194775991 @default.
- W3138073335 cites W2220258027 @default.
- W3138073335 cites W2295107390 @default.
- W3138073335 cites W2302255633 @default.
- W3138073335 cites W2341058432 @default.
- W3138073335 cites W2519730330 @default.
- W3138073335 cites W2520707372 @default.
- W3138073335 cites W2523332653 @default.
- W3138073335 cites W2562637781 @default.
- W3138073335 cites W2587789887 @default.
- W3138073335 cites W2599354622 @default.
- W3138073335 cites W2605135824 @default.
- W3138073335 cites W2626639386 @default.
- W3138073335 cites W2750384547 @default.
- W3138073335 cites W2765407302 @default.
- W3138073335 cites W2777342313 @default.
- W3138073335 cites W2786088545 @default.
- W3138073335 cites W2786599352 @default.
- W3138073335 cites W2803697594 @default.
- W3138073335 cites W2809705434 @default.
- W3138073335 cites W2914570111 @default.
- W3138073335 cites W2921491036 @default.
- W3138073335 cites W2921906393 @default.
- W3138073335 cites W2925312408 @default.
- W3138073335 cites W2948982773 @default.
- W3138073335 cites W2950096404 @default.
- W3138073335 cites W2951004968 @default.
- W3138073335 cites W2952034151 @default.
- W3138073335 cites W2960737790 @default.
- W3138073335 cites W2962616725 @default.
- W3138073335 cites W2963045681 @default.
- W3138073335 cites W2963049059 @default.
- W3138073335 cites W2963061824 @default.
- W3138073335 cites W2963111876 @default.
- W3138073335 cites W2963142663 @default.
- W3138073335 cites W2963240734 @default.
- W3138073335 cites W2963610939 @default.
- W3138073335 cites W2963636093 @default.
- W3138073335 cites W2963773039 @default.
- W3138073335 cites W2963795951 @default.
- W3138073335 cites W2964232409 @default.
- W3138073335 cites W2970971581 @default.
- W3138073335 cites W2978971541 @default.
- W3138073335 cites W2981741013 @default.
- W3138073335 cites W2982324952 @default.
- W3138073335 cites W2987228832 @default.
- W3138073335 cites W2989623883 @default.
- W3138073335 cites W2990196297 @default.
- W3138073335 cites W2995458562 @default.
- W3138073335 cites W2996179709 @default.
- W3138073335 cites W2998977172 @default.
- W3138073335 cites W3005491901 @default.
- W3138073335 cites W3012693338 @default.
- W3138073335 cites W3027698468 @default.
- W3138073335 cites W3032697887 @default.
- W3138073335 cites W3034314048 @default.
- W3138073335 cites W3034368386 @default.
- W3138073335 cites W3034648032 @default.
- W3138073335 cites W3034671389 @default.
- W3138073335 cites W3034978746 @default.
- W3138073335 cites W3034986516 @default.
- W3138073335 cites W3035240825 @default.
- W3138073335 cites W3048310130 @default.
- W3138073335 cites W3082604781 @default.
- W3138073335 cites W3089682612 @default.
- W3138073335 cites W3092164539 @default.
- W3138073335 cites W3110039477 @default.
- W3138073335 cites W3120169429 @default.
- W3138073335 cites W3127594546 @default.
- W3138073335 cites W3173538657 @default.
- W3138073335 hasPublicationYear "2021" @default.