Matches in SemOpenAlex for { <https://semopenalex.org/work/W3138156964> ?p ?o ?g. }
- W3138156964 endingPage "380" @default.
- W3138156964 startingPage "371" @default.
- W3138156964 abstract "As an important research area of modern manufacturing, tool condition monitoring (TCM) has attracted much attention, especially artificial intelligence (AI)- based TCM method. However, the training samples obtained in practical experiments have the problem of sample missing and sample insufficiency. A numerical simulation- based TCM method is proposed to solve the above problem. First, a numerical model based on Johnson-Cook model is established, and the model parameters are optimized through orthogonal experiment technology, in which the KL divergence and cosine similarity are used as the evaluation indexes. Second, samples under various tool wear categories are obtained by the optimized numerical model above to provide missing samples not present in the practical experiments and expand sample size. The effectiveness of the proposed method is verified by its application in end milling TCM experiments. The results indicate the classification accuracies of four classifiers (SVM, RF, DT, and GRNN) can be improved significantly by the proposed TCM method." @default.
- W3138156964 created "2021-03-29" @default.
- W3138156964 creator A5013836686 @default.
- W3138156964 creator A5023204180 @default.
- W3138156964 creator A5036227634 @default.
- W3138156964 creator A5058869609 @default.
- W3138156964 date "2021-06-30" @default.
- W3138156964 modified "2023-09-26" @default.
- W3138156964 title "A tool wear condition monitoring approach for end milling based on numerical simulation" @default.
- W3138156964 cites W1968767227 @default.
- W3138156964 cites W1975396341 @default.
- W3138156964 cites W1988671308 @default.
- W3138156964 cites W1996366705 @default.
- W3138156964 cites W2025479966 @default.
- W3138156964 cites W2026653933 @default.
- W3138156964 cites W2072283503 @default.
- W3138156964 cites W2139730649 @default.
- W3138156964 cites W2144095919 @default.
- W3138156964 cites W2326483043 @default.
- W3138156964 cites W2474396490 @default.
- W3138156964 cites W2559974428 @default.
- W3138156964 cites W2566022712 @default.
- W3138156964 cites W2571245100 @default.
- W3138156964 cites W2600291457 @default.
- W3138156964 cites W2601486059 @default.
- W3138156964 cites W2726451741 @default.
- W3138156964 cites W2776582420 @default.
- W3138156964 cites W2891596109 @default.
- W3138156964 cites W2901112046 @default.
- W3138156964 cites W2903064180 @default.
- W3138156964 cites W2942223379 @default.
- W3138156964 cites W2967000986 @default.
- W3138156964 cites W2972950520 @default.
- W3138156964 cites W2979034075 @default.
- W3138156964 cites W2985286607 @default.
- W3138156964 cites W2985371178 @default.
- W3138156964 cites W3001708567 @default.
- W3138156964 cites W3003767554 @default.
- W3138156964 cites W3005789239 @default.
- W3138156964 cites W3028078160 @default.
- W3138156964 cites W3033399219 @default.
- W3138156964 cites W3034724350 @default.
- W3138156964 cites W3034874936 @default.
- W3138156964 cites W3035360999 @default.
- W3138156964 cites W3041632065 @default.
- W3138156964 cites W3043899764 @default.
- W3138156964 cites W3049009807 @default.
- W3138156964 cites W3088834512 @default.
- W3138156964 cites W3108825228 @default.
- W3138156964 cites W3120571613 @default.
- W3138156964 cites W3122107135 @default.
- W3138156964 cites W3128935538 @default.
- W3138156964 doi "https://doi.org/10.17531/ein.2021.2.17" @default.
- W3138156964 hasPublicationYear "2021" @default.
- W3138156964 type Work @default.
- W3138156964 sameAs 3138156964 @default.
- W3138156964 citedByCount "2" @default.
- W3138156964 countsByYear W31381569642021 @default.
- W3138156964 countsByYear W31381569642022 @default.
- W3138156964 crossrefType "journal-article" @default.
- W3138156964 hasAuthorship W3138156964A5013836686 @default.
- W3138156964 hasAuthorship W3138156964A5023204180 @default.
- W3138156964 hasAuthorship W3138156964A5036227634 @default.
- W3138156964 hasAuthorship W3138156964A5058869609 @default.
- W3138156964 hasBestOaLocation W31381569641 @default.
- W3138156964 hasConcept C103278499 @default.
- W3138156964 hasConcept C11413529 @default.
- W3138156964 hasConcept C115961682 @default.
- W3138156964 hasConcept C119857082 @default.
- W3138156964 hasConcept C12267149 @default.
- W3138156964 hasConcept C124101348 @default.
- W3138156964 hasConcept C127413603 @default.
- W3138156964 hasConcept C138885662 @default.
- W3138156964 hasConcept C153180895 @default.
- W3138156964 hasConcept C154945302 @default.
- W3138156964 hasConcept C178009071 @default.
- W3138156964 hasConcept C185592680 @default.
- W3138156964 hasConcept C198531522 @default.
- W3138156964 hasConcept C207390915 @default.
- W3138156964 hasConcept C2524010 @default.
- W3138156964 hasConcept C2776450708 @default.
- W3138156964 hasConcept C2780762811 @default.
- W3138156964 hasConcept C33923547 @default.
- W3138156964 hasConcept C41008148 @default.
- W3138156964 hasConcept C41895202 @default.
- W3138156964 hasConcept C43617362 @default.
- W3138156964 hasConcept C523214423 @default.
- W3138156964 hasConcept C78519656 @default.
- W3138156964 hasConceptScore W3138156964C103278499 @default.
- W3138156964 hasConceptScore W3138156964C11413529 @default.
- W3138156964 hasConceptScore W3138156964C115961682 @default.
- W3138156964 hasConceptScore W3138156964C119857082 @default.
- W3138156964 hasConceptScore W3138156964C12267149 @default.
- W3138156964 hasConceptScore W3138156964C124101348 @default.
- W3138156964 hasConceptScore W3138156964C127413603 @default.
- W3138156964 hasConceptScore W3138156964C138885662 @default.
- W3138156964 hasConceptScore W3138156964C153180895 @default.
- W3138156964 hasConceptScore W3138156964C154945302 @default.