Matches in SemOpenAlex for { <https://semopenalex.org/work/W3138157045> ?p ?o ?g. }
- W3138157045 endingPage "736651" @default.
- W3138157045 startingPage "736651" @default.
- W3138157045 abstract "The future of European eel aquaculture depends on closing the life cycle in captivity. Present focus is on developing suitable larval rearing technology. This study explored new salinity reduction applications to elucidate performance thresholds of European eel larvae produced under realistic hatchery conditions, using Kreisel tanks and recirculating aquaculture systems for larval culture. The study links eel larval survival and biometrics to expression of genes related to underlying molecular mechanisms by taking parental effects into account. Larvae from different families were reared either at constant salinity of 36 psu (Control) or subjected to salinity reduction (36 to 18 psu) initiated 3 days post hatch (dph) and at a rate of 4 psu/day, occurring either within 1 h (Fast) or 24 h (Slow). An extreme scenario, reducing salinity directly from 36 to 18 psu within 1 h on 6 dph (Drastic) was also tested. Early and gradual salinity reduction (Slow or Fast) led to increased growth rate and larger larvae, while influencing the expression of dio3 (deiodination mechanism and thyroid endocrine system). Expression of atp6 and cox1 (energy metabolism) was constant, indicating that energy metabolism was stable and independent of salinity, while expression of nkcc1a (ion regulation) was upregulated in the Control, suggesting an upregulation of active Na + , K + , and Cl − transport and thus increased cellular energy consumption. This explained that eel larvae experiencing an early and progressive salinity reduction, used their energy reserves more efficiently, leading to improved growth and survival. However, salinity reduction caused heart edema. Expression patterns of 12 genes [stress/repair ( hsp90 ), immune response ( mhc2 ), neurogenesis ( neurod4 ), deiodination ( dio2 ), thyroid metabolism ( thαa , thαb , thβb ), energy metabolism ( atp6 ), skeletogenesis ( bmp2b , bmp5 ), growth ( igf2b ), ion regulation ( nkcc2b )] on 6 dph and 5 genes [water transport ( aqp3 ), immune response ( il1β ), thyroid metabolism ( thβb ), skeletogenesis ( bmp5 ), heart development ( nppb )] on 12 dph were driven by genotype (family) × environment (salinity) interactions, revealing batch specific phenotypic plasticity and describing a genetic programming of molecular mechanisms and intrinsic sensitivity to environmental drivers that need to be considered in future eel aquaculture. In conclusion, early and progressive salinity reduction (Fast or Slow) benefits larval eel growth and survival, but emerging implications regarding heart edema need to be addressed in future studies. On the other hand, we show that biotechnical difficulties for introducing salinity reductions, can be circumvented by directly moving larvae from seawater to isoosmotic conditions, but suited application timing needs to be explored. • Reducing salinity towards isoosmotic conditions benefits eel larval survival. • Genetically programmed developmental timing of key molecular mechanisms. • Gene expression patterns were driven by genotype × environment interactions. • Applicability of efficient salinity reduction protocols for eel larviculture." @default.
- W3138157045 created "2021-03-29" @default.
- W3138157045 creator A5006586939 @default.
- W3138157045 creator A5008144610 @default.
- W3138157045 creator A5010070676 @default.
- W3138157045 creator A5029692607 @default.
- W3138157045 creator A5053226985 @default.
- W3138157045 creator A5054168951 @default.
- W3138157045 creator A5055260405 @default.
- W3138157045 creator A5072984614 @default.
- W3138157045 date "2021-06-01" @default.
- W3138157045 modified "2023-10-05" @default.
- W3138157045 title "Performance thresholds of hatchery produced European eel larvae reared at different salinity regimes" @default.
- W3138157045 cites W1122914595 @default.
- W3138157045 cites W1979745439 @default.
- W3138157045 cites W1981618799 @default.
- W3138157045 cites W1986286475 @default.
- W3138157045 cites W2001481796 @default.
- W3138157045 cites W2007514737 @default.
- W3138157045 cites W2015433203 @default.
- W3138157045 cites W2016020533 @default.
- W3138157045 cites W2023306115 @default.
- W3138157045 cites W2024119106 @default.
- W3138157045 cites W2030126026 @default.
- W3138157045 cites W2031057773 @default.
- W3138157045 cites W2065120249 @default.
- W3138157045 cites W2083920150 @default.
- W3138157045 cites W2088401655 @default.
- W3138157045 cites W2100259516 @default.
- W3138157045 cites W2107277218 @default.
- W3138157045 cites W2113119323 @default.
- W3138157045 cites W2131930086 @default.
- W3138157045 cites W2137621906 @default.
- W3138157045 cites W2138581811 @default.
- W3138157045 cites W2148377510 @default.
- W3138157045 cites W2151169335 @default.
- W3138157045 cites W2156841410 @default.
- W3138157045 cites W2174354387 @default.
- W3138157045 cites W2292141002 @default.
- W3138157045 cites W2475962552 @default.
- W3138157045 cites W2749262504 @default.
- W3138157045 cites W2766020347 @default.
- W3138157045 cites W2808172050 @default.
- W3138157045 cites W2810679698 @default.
- W3138157045 cites W2893989635 @default.
- W3138157045 cites W2903662348 @default.
- W3138157045 cites W2906473935 @default.
- W3138157045 cites W2964567396 @default.
- W3138157045 cites W3011629536 @default.
- W3138157045 cites W3038971645 @default.
- W3138157045 doi "https://doi.org/10.1016/j.aquaculture.2021.736651" @default.
- W3138157045 hasPublicationYear "2021" @default.
- W3138157045 type Work @default.
- W3138157045 sameAs 3138157045 @default.
- W3138157045 citedByCount "12" @default.
- W3138157045 countsByYear W31381570452022 @default.
- W3138157045 countsByYear W31381570452023 @default.
- W3138157045 crossrefType "journal-article" @default.
- W3138157045 hasAuthorship W3138157045A5006586939 @default.
- W3138157045 hasAuthorship W3138157045A5008144610 @default.
- W3138157045 hasAuthorship W3138157045A5010070676 @default.
- W3138157045 hasAuthorship W3138157045A5029692607 @default.
- W3138157045 hasAuthorship W3138157045A5053226985 @default.
- W3138157045 hasAuthorship W3138157045A5054168951 @default.
- W3138157045 hasAuthorship W3138157045A5055260405 @default.
- W3138157045 hasAuthorship W3138157045A5072984614 @default.
- W3138157045 hasBestOaLocation W31381570452 @default.
- W3138157045 hasConcept C129513315 @default.
- W3138157045 hasConcept C140793950 @default.
- W3138157045 hasConcept C173758957 @default.
- W3138157045 hasConcept C18903297 @default.
- W3138157045 hasConcept C2779958227 @default.
- W3138157045 hasConcept C2909208804 @default.
- W3138157045 hasConcept C505870484 @default.
- W3138157045 hasConcept C86803240 @default.
- W3138157045 hasConcept C86909935 @default.
- W3138157045 hasConcept C90856448 @default.
- W3138157045 hasConceptScore W3138157045C129513315 @default.
- W3138157045 hasConceptScore W3138157045C140793950 @default.
- W3138157045 hasConceptScore W3138157045C173758957 @default.
- W3138157045 hasConceptScore W3138157045C18903297 @default.
- W3138157045 hasConceptScore W3138157045C2779958227 @default.
- W3138157045 hasConceptScore W3138157045C2909208804 @default.
- W3138157045 hasConceptScore W3138157045C505870484 @default.
- W3138157045 hasConceptScore W3138157045C86803240 @default.
- W3138157045 hasConceptScore W3138157045C86909935 @default.
- W3138157045 hasConceptScore W3138157045C90856448 @default.
- W3138157045 hasLocation W31381570451 @default.
- W3138157045 hasLocation W31381570452 @default.
- W3138157045 hasLocation W31381570453 @default.
- W3138157045 hasOpenAccess W3138157045 @default.
- W3138157045 hasPrimaryLocation W31381570451 @default.
- W3138157045 hasRelatedWork W2025698399 @default.
- W3138157045 hasRelatedWork W2041838021 @default.
- W3138157045 hasRelatedWork W2058747951 @default.
- W3138157045 hasRelatedWork W2070018149 @default.
- W3138157045 hasRelatedWork W2082647494 @default.
- W3138157045 hasRelatedWork W2090190636 @default.