Matches in SemOpenAlex for { <https://semopenalex.org/work/W3138259931> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W3138259931 abstract "Document Embedding methods are an impressive task in each machine learning or neural network based natural language processing task. This task is entitled by representation learning and knowledge representation, too. In ultimate the target of this task, each document outputs a representation format of text documents in order to be understandable for machine. Literature reviews in representation learning, shows that document embedding methods for text is weaker in compare with representation of image or signal. Also, in compare to other data like as image or signal, representation of text has more challenges. By this, this paper we suggested a piped process of Generative Adversarial Neural Network and Extreme Learning Machine technique for document embedding. The experimental results show that document embedding using this combination of Generative Adversarial Networks and Extreme learning machines is comparative with other available methods of document embedding." @default.
- W3138259931 created "2021-03-29" @default.
- W3138259931 creator A5013297823 @default.
- W3138259931 creator A5072704310 @default.
- W3138259931 date "2021-01-04" @default.
- W3138259931 modified "2023-09-23" @default.
- W3138259931 title "Document Embedding using piped ELM-GAN Model" @default.
- W3138259931 cites W2564929713 @default.
- W3138259931 cites W2807836478 @default.
- W3138259931 cites W2940589124 @default.
- W3138259931 cites W2945178666 @default.
- W3138259931 cites W2969660123 @default.
- W3138259931 cites W2984733277 @default.
- W3138259931 cites W2989363164 @default.
- W3138259931 cites W2989980396 @default.
- W3138259931 cites W2991192488 @default.
- W3138259931 cites W2996149946 @default.
- W3138259931 cites W2998745260 @default.
- W3138259931 cites W3003955104 @default.
- W3138259931 cites W3005700414 @default.
- W3138259931 cites W3014753739 @default.
- W3138259931 cites W3017057548 @default.
- W3138259931 cites W3023238803 @default.
- W3138259931 cites W3035324702 @default.
- W3138259931 cites W3035394311 @default.
- W3138259931 cites W3080903199 @default.
- W3138259931 cites W3083907077 @default.
- W3138259931 doi "https://doi.org/10.1109/imcom51814.2021.9377413" @default.
- W3138259931 hasPublicationYear "2021" @default.
- W3138259931 type Work @default.
- W3138259931 sameAs 3138259931 @default.
- W3138259931 citedByCount "0" @default.
- W3138259931 crossrefType "proceedings-article" @default.
- W3138259931 hasAuthorship W3138259931A5013297823 @default.
- W3138259931 hasAuthorship W3138259931A5072704310 @default.
- W3138259931 hasConcept C119857082 @default.
- W3138259931 hasConcept C153180895 @default.
- W3138259931 hasConcept C154945302 @default.
- W3138259931 hasConcept C162324750 @default.
- W3138259931 hasConcept C17744445 @default.
- W3138259931 hasConcept C187736073 @default.
- W3138259931 hasConcept C199539241 @default.
- W3138259931 hasConcept C204321447 @default.
- W3138259931 hasConcept C2776359362 @default.
- W3138259931 hasConcept C2780150128 @default.
- W3138259931 hasConcept C2780451532 @default.
- W3138259931 hasConcept C41008148 @default.
- W3138259931 hasConcept C41608201 @default.
- W3138259931 hasConcept C50644808 @default.
- W3138259931 hasConcept C59404180 @default.
- W3138259931 hasConcept C94625758 @default.
- W3138259931 hasConceptScore W3138259931C119857082 @default.
- W3138259931 hasConceptScore W3138259931C153180895 @default.
- W3138259931 hasConceptScore W3138259931C154945302 @default.
- W3138259931 hasConceptScore W3138259931C162324750 @default.
- W3138259931 hasConceptScore W3138259931C17744445 @default.
- W3138259931 hasConceptScore W3138259931C187736073 @default.
- W3138259931 hasConceptScore W3138259931C199539241 @default.
- W3138259931 hasConceptScore W3138259931C204321447 @default.
- W3138259931 hasConceptScore W3138259931C2776359362 @default.
- W3138259931 hasConceptScore W3138259931C2780150128 @default.
- W3138259931 hasConceptScore W3138259931C2780451532 @default.
- W3138259931 hasConceptScore W3138259931C41008148 @default.
- W3138259931 hasConceptScore W3138259931C41608201 @default.
- W3138259931 hasConceptScore W3138259931C50644808 @default.
- W3138259931 hasConceptScore W3138259931C59404180 @default.
- W3138259931 hasConceptScore W3138259931C94625758 @default.
- W3138259931 hasLocation W31382599311 @default.
- W3138259931 hasOpenAccess W3138259931 @default.
- W3138259931 hasPrimaryLocation W31382599311 @default.
- W3138259931 hasRelatedWork W10961682 @default.
- W3138259931 hasRelatedWork W11223206 @default.
- W3138259931 hasRelatedWork W1243554 @default.
- W3138259931 hasRelatedWork W13538861 @default.
- W3138259931 hasRelatedWork W1383942 @default.
- W3138259931 hasRelatedWork W149980 @default.
- W3138259931 hasRelatedWork W9321062 @default.
- W3138259931 hasRelatedWork W9607854 @default.
- W3138259931 hasRelatedWork W9711757 @default.
- W3138259931 hasRelatedWork W9770290 @default.
- W3138259931 isParatext "false" @default.
- W3138259931 isRetracted "false" @default.
- W3138259931 magId "3138259931" @default.
- W3138259931 workType "article" @default.