Matches in SemOpenAlex for { <https://semopenalex.org/work/W3138274077> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W3138274077 endingPage "9" @default.
- W3138274077 startingPage "030412" @default.
- W3138274077 abstract "Abstract Atrial fibrillation (AF) is the most common cardiac arrhythmia, and it can cause a variety of cardiovascular diseases. This brings great hidden danger to people’s health and life safety all over the world. Electrocardiogram (ECG) is one of the most important noninvasive diagnostic tools for heart disease. Accurate interpretation of ECG is particularly important for the detection and treatment of AF. It is valuable to develop an efficient, accurate, and stable automatic AF detection algorithm in clinical settings. Therefore, this article proposes a novel integrated module, which combines densely connected convolutional network (DenseNet) module and bidirectional long short-term memory (BLSTM) module, based on the excellent ability of BLSTM on extracting the time series features, while DenseNet on capturing local features. Furthermore, we also propose a novel network architecture (MF-DenseNet‐BLSTM) based on the integrated module mentioned above and multi-feature fusion for automatic AF detection using the ECG signals. The proposed model employs the architecture of dual-stream deep neural network to fusing multiple features. Specifically, the network of each stream structure consists of two parts with DenseNet module and BLSTM module. The data sets used to validate and test the proposed model are from the MIT-BIH Atrial Fibrillation Database. The experimental results show that the proposed model achieved 98.81% accuracy in training set, and achieved 98.04% accuracy in the testing set which is unseen data set. The proposed MF-DenseNet‐BLSTM has shown excellent robustness and accuracy in automatic AF detection." @default.
- W3138274077 created "2021-03-29" @default.
- W3138274077 creator A5043401373 @default.
- W3138274077 creator A5049261977 @default.
- W3138274077 creator A5054518292 @default.
- W3138274077 creator A5059109670 @default.
- W3138274077 creator A5060888636 @default.
- W3138274077 date "2021-05-01" @default.
- W3138274077 modified "2023-09-23" @default.
- W3138274077 title "Multi-feature Fusion of Deep Neural Network for Screening Atrial Fibrillation Using ECG Signals" @default.
- W3138274077 cites W1849277567 @default.
- W3138274077 cites W1971505725 @default.
- W3138274077 cites W1975692469 @default.
- W3138274077 cites W2011072014 @default.
- W3138274077 cites W2043709517 @default.
- W3138274077 cites W2064675550 @default.
- W3138274077 cites W2066466450 @default.
- W3138274077 cites W2087705161 @default.
- W3138274077 cites W2089534375 @default.
- W3138274077 cites W2140005438 @default.
- W3138274077 cites W2141950020 @default.
- W3138274077 cites W2162800060 @default.
- W3138274077 cites W2210247222 @default.
- W3138274077 cites W2605056515 @default.
- W3138274077 cites W2803341508 @default.
- W3138274077 cites W2808297418 @default.
- W3138274077 cites W2811306060 @default.
- W3138274077 cites W2886982273 @default.
- W3138274077 cites W2890591602 @default.
- W3138274077 cites W2891102016 @default.
- W3138274077 cites W2891873756 @default.
- W3138274077 cites W2902385594 @default.
- W3138274077 cites W2913995334 @default.
- W3138274077 doi "https://doi.org/10.2352/j.imagingsci.technol.2021.65.3.030412" @default.
- W3138274077 hasPublicationYear "2021" @default.
- W3138274077 type Work @default.
- W3138274077 sameAs 3138274077 @default.
- W3138274077 citedByCount "1" @default.
- W3138274077 countsByYear W31382740772023 @default.
- W3138274077 crossrefType "journal-article" @default.
- W3138274077 hasAuthorship W3138274077A5043401373 @default.
- W3138274077 hasAuthorship W3138274077A5049261977 @default.
- W3138274077 hasAuthorship W3138274077A5054518292 @default.
- W3138274077 hasAuthorship W3138274077A5059109670 @default.
- W3138274077 hasAuthorship W3138274077A5060888636 @default.
- W3138274077 hasConcept C138885662 @default.
- W3138274077 hasConcept C153180895 @default.
- W3138274077 hasConcept C154945302 @default.
- W3138274077 hasConcept C158525013 @default.
- W3138274077 hasConcept C164705383 @default.
- W3138274077 hasConcept C2776401178 @default.
- W3138274077 hasConcept C2779161974 @default.
- W3138274077 hasConcept C28490314 @default.
- W3138274077 hasConcept C41008148 @default.
- W3138274077 hasConcept C41895202 @default.
- W3138274077 hasConcept C50644808 @default.
- W3138274077 hasConcept C71924100 @default.
- W3138274077 hasConceptScore W3138274077C138885662 @default.
- W3138274077 hasConceptScore W3138274077C153180895 @default.
- W3138274077 hasConceptScore W3138274077C154945302 @default.
- W3138274077 hasConceptScore W3138274077C158525013 @default.
- W3138274077 hasConceptScore W3138274077C164705383 @default.
- W3138274077 hasConceptScore W3138274077C2776401178 @default.
- W3138274077 hasConceptScore W3138274077C2779161974 @default.
- W3138274077 hasConceptScore W3138274077C28490314 @default.
- W3138274077 hasConceptScore W3138274077C41008148 @default.
- W3138274077 hasConceptScore W3138274077C41895202 @default.
- W3138274077 hasConceptScore W3138274077C50644808 @default.
- W3138274077 hasConceptScore W3138274077C71924100 @default.
- W3138274077 hasIssue "3" @default.
- W3138274077 hasLocation W31382740771 @default.
- W3138274077 hasOpenAccess W3138274077 @default.
- W3138274077 hasPrimaryLocation W31382740771 @default.
- W3138274077 hasRelatedWork W1971623867 @default.
- W3138274077 hasRelatedWork W2016461833 @default.
- W3138274077 hasRelatedWork W2052253960 @default.
- W3138274077 hasRelatedWork W2147802381 @default.
- W3138274077 hasRelatedWork W2382607599 @default.
- W3138274077 hasRelatedWork W2509918103 @default.
- W3138274077 hasRelatedWork W2546942002 @default.
- W3138274077 hasRelatedWork W2760085659 @default.
- W3138274077 hasRelatedWork W2785535669 @default.
- W3138274077 hasRelatedWork W2929240682 @default.
- W3138274077 hasVolume "65" @default.
- W3138274077 isParatext "false" @default.
- W3138274077 isRetracted "false" @default.
- W3138274077 magId "3138274077" @default.
- W3138274077 workType "article" @default.