Matches in SemOpenAlex for { <https://semopenalex.org/work/W3138284076> ?p ?o ?g. }
- W3138284076 endingPage "1414" @default.
- W3138284076 startingPage "1399" @default.
- W3138284076 abstract "Anomaly detection constitutes a fundamental step in developing self-aware autonomous agents capable of continuously learning from new situations, as it enables to distinguish novel experiences from already encountered ones. This paper combines Dynamic Bayesian Networks (DBNs) and Neural Networks (NNs) and proposes a method for detecting anomalies in video data at different abstraction levels. We use a Variational Autoencoder (VAE) to reduce the dimensionality of video frames, and Optical Flows between subsequent images, generating a latent space that captures both visual and dynamical information and that is comparable to low-dimensional sensory data (e.g., positioning, steering angle). An Adapted Markov Jump Particle Filter is employed to predict the following frames and detect anomalies in video data. Our method’s evaluation is executed using different video data from a semi-autonomous vehicle performing different tasks in a closed environment. Tests on benchmark anomaly detection datasets have additionally been conducted." @default.
- W3138284076 created "2021-03-29" @default.
- W3138284076 creator A5007586148 @default.
- W3138284076 creator A5019722167 @default.
- W3138284076 creator A5048444161 @default.
- W3138284076 creator A5055281228 @default.
- W3138284076 creator A5067321490 @default.
- W3138284076 date "2022-01-01" @default.
- W3138284076 modified "2023-10-17" @default.
- W3138284076 title "Multilevel Anomaly Detection Through Variational Autoencoders and Bayesian Models for Self-Aware Embodied Agents" @default.
- W3138284076 cites W1568586930 @default.
- W3138284076 cites W1595717062 @default.
- W3138284076 cites W1749494163 @default.
- W3138284076 cites W2060608798 @default.
- W3138284076 cites W2103394661 @default.
- W3138284076 cites W2108287924 @default.
- W3138284076 cites W2130167438 @default.
- W3138284076 cites W2132003317 @default.
- W3138284076 cites W2138092272 @default.
- W3138284076 cites W2153418039 @default.
- W3138284076 cites W2161969291 @default.
- W3138284076 cites W2163612318 @default.
- W3138284076 cites W2164261375 @default.
- W3138284076 cites W2299778380 @default.
- W3138284076 cites W2460849547 @default.
- W3138284076 cites W2479936045 @default.
- W3138284076 cites W2562900330 @default.
- W3138284076 cites W2665124875 @default.
- W3138284076 cites W2738136547 @default.
- W3138284076 cites W2753526808 @default.
- W3138284076 cites W2766042539 @default.
- W3138284076 cites W2777288981 @default.
- W3138284076 cites W2784226479 @default.
- W3138284076 cites W2790344751 @default.
- W3138284076 cites W2796762894 @default.
- W3138284076 cites W2803469628 @default.
- W3138284076 cites W2891442281 @default.
- W3138284076 cites W2899160681 @default.
- W3138284076 cites W2903380502 @default.
- W3138284076 cites W2908941882 @default.
- W3138284076 cites W2911200746 @default.
- W3138284076 cites W2915671248 @default.
- W3138284076 cites W2945495590 @default.
- W3138284076 cites W2948978827 @default.
- W3138284076 cites W2962850830 @default.
- W3138284076 cites W2963193706 @default.
- W3138284076 cites W2963366965 @default.
- W3138284076 cites W2963610939 @default.
- W3138284076 cites W2964032056 @default.
- W3138284076 cites W2982875523 @default.
- W3138284076 cites W2990266374 @default.
- W3138284076 cites W2991506670 @default.
- W3138284076 cites W2994160805 @default.
- W3138284076 cites W3012200311 @default.
- W3138284076 cites W3015879326 @default.
- W3138284076 cites W3016271378 @default.
- W3138284076 cites W3019131160 @default.
- W3138284076 cites W3023100680 @default.
- W3138284076 cites W3088240102 @default.
- W3138284076 cites W3089804341 @default.
- W3138284076 cites W3094528781 @default.
- W3138284076 cites W3104219616 @default.
- W3138284076 cites W3122585939 @default.
- W3138284076 cites W4220671231 @default.
- W3138284076 doi "https://doi.org/10.1109/tmm.2021.3065232" @default.
- W3138284076 hasPublicationYear "2022" @default.
- W3138284076 type Work @default.
- W3138284076 sameAs 3138284076 @default.
- W3138284076 citedByCount "12" @default.
- W3138284076 countsByYear W31382840762021 @default.
- W3138284076 countsByYear W31382840762022 @default.
- W3138284076 countsByYear W31382840762023 @default.
- W3138284076 crossrefType "journal-article" @default.
- W3138284076 hasAuthorship W3138284076A5007586148 @default.
- W3138284076 hasAuthorship W3138284076A5019722167 @default.
- W3138284076 hasAuthorship W3138284076A5048444161 @default.
- W3138284076 hasAuthorship W3138284076A5055281228 @default.
- W3138284076 hasAuthorship W3138284076A5067321490 @default.
- W3138284076 hasConcept C101738243 @default.
- W3138284076 hasConcept C107673813 @default.
- W3138284076 hasConcept C111030470 @default.
- W3138284076 hasConcept C111472728 @default.
- W3138284076 hasConcept C119857082 @default.
- W3138284076 hasConcept C124304363 @default.
- W3138284076 hasConcept C13280743 @default.
- W3138284076 hasConcept C138885662 @default.
- W3138284076 hasConcept C153180895 @default.
- W3138284076 hasConcept C154945302 @default.
- W3138284076 hasConcept C185798385 @default.
- W3138284076 hasConcept C205649164 @default.
- W3138284076 hasConcept C23224414 @default.
- W3138284076 hasConcept C31972630 @default.
- W3138284076 hasConcept C41008148 @default.
- W3138284076 hasConcept C50644808 @default.
- W3138284076 hasConcept C739882 @default.
- W3138284076 hasConcept C82142266 @default.
- W3138284076 hasConceptScore W3138284076C101738243 @default.
- W3138284076 hasConceptScore W3138284076C107673813 @default.