Matches in SemOpenAlex for { <https://semopenalex.org/work/W3138289328> ?p ?o ?g. }
- W3138289328 endingPage "764" @default.
- W3138289328 startingPage "740" @default.
- W3138289328 abstract "Purpose Cracks on surface are often identified as one of the early indications of damage and possible future catastrophic structural failure. Thus, detection of cracks is vital for the timely inspection, health diagnosis and maintenance of infrastructures. However, conventional visual inspection-based methods are criticized for being subjective, greatly affected by inspector's expertise, labor-intensive and time-consuming. Design/methodology/approach This paper proposes a novel self-adaptive-based method for automated and semantic crack detection and recognition in various infrastructures using computer vision technologies. The developed method is envisioned on three main models that are structured to circumvent the shortcomings of visual inspection in detection of cracks in walls, pavement and deck. The first model deploys modified visual geometry group network (VGG19) for extraction of global contextual and local deep learning features in an attempt to alleviate the drawbacks of hand-crafted features. The second model is conceptualized on the integration of K-nearest neighbors (KNN) and differential evolution (DE) algorithm for the automated optimization of its structure. The third model is designated for validating the developed method through an extensive four layers of performance evaluation and statistical comparisons. Findings It was observed that the developed method significantly outperformed other crack and detection models. For instance, the developed wall crack detection method accomplished overall accuracy, F-measure, Kappa coefficient, area under the curve, balanced accuracy, Matthew's correlation coefficient and Youden's index of 99.62%, 99.16%, 0.998, 0.998, 99.17%, 0.989 and 0.983, respectively. Originality/value Literature review lacks an efficient method which can look at crack detection and recognition of an ensemble of infrastructures. Furthermore, there is absence of systematic and detailed comparisons between crack detection and recognition models." @default.
- W3138289328 created "2021-03-29" @default.
- W3138289328 creator A5049257114 @default.
- W3138289328 date "2021-03-17" @default.
- W3138289328 modified "2023-10-14" @default.
- W3138289328 title "On the hybridization of pre-trained deep learning and differential evolution algorithms for semantic crack detection and recognition in ensemble of infrastructures" @default.
- W3138289328 cites W1595159159 @default.
- W3138289328 cites W1970712421 @default.
- W3138289328 cites W2057495778 @default.
- W3138289328 cites W2258958520 @default.
- W3138289328 cites W2339465502 @default.
- W3138289328 cites W2566546024 @default.
- W3138289328 cites W2588612844 @default.
- W3138289328 cites W2597602073 @default.
- W3138289328 cites W2751993439 @default.
- W3138289328 cites W2757455114 @default.
- W3138289328 cites W2783165089 @default.
- W3138289328 cites W2789316274 @default.
- W3138289328 cites W2791983955 @default.
- W3138289328 cites W2792100259 @default.
- W3138289328 cites W2799323434 @default.
- W3138289328 cites W2883044646 @default.
- W3138289328 cites W2883867629 @default.
- W3138289328 cites W2884015673 @default.
- W3138289328 cites W2888545403 @default.
- W3138289328 cites W2888728157 @default.
- W3138289328 cites W2894895353 @default.
- W3138289328 cites W2897427890 @default.
- W3138289328 cites W2899257989 @default.
- W3138289328 cites W2899803215 @default.
- W3138289328 cites W2900912587 @default.
- W3138289328 cites W2903524341 @default.
- W3138289328 cites W2905163589 @default.
- W3138289328 cites W2906865128 @default.
- W3138289328 cites W2911538783 @default.
- W3138289328 cites W2920193448 @default.
- W3138289328 cites W2922996042 @default.
- W3138289328 cites W2941356554 @default.
- W3138289328 cites W2946361138 @default.
- W3138289328 cites W2948461581 @default.
- W3138289328 cites W2962731062 @default.
- W3138289328 cites W2963908722 @default.
- W3138289328 cites W2965516370 @default.
- W3138289328 cites W2966893608 @default.
- W3138289328 cites W2969843925 @default.
- W3138289328 cites W2970225046 @default.
- W3138289328 cites W2973001551 @default.
- W3138289328 cites W2985260510 @default.
- W3138289328 cites W2995139614 @default.
- W3138289328 cites W2997300431 @default.
- W3138289328 cites W3004166603 @default.
- W3138289328 cites W3004423752 @default.
- W3138289328 cites W3005933934 @default.
- W3138289328 cites W3008362003 @default.
- W3138289328 cites W3010305771 @default.
- W3138289328 cites W3024770686 @default.
- W3138289328 cites W3080613661 @default.
- W3138289328 cites W3082670201 @default.
- W3138289328 cites W3090507739 @default.
- W3138289328 cites W3115818327 @default.
- W3138289328 cites W3117184401 @default.
- W3138289328 cites W3127137534 @default.
- W3138289328 cites W4243402514 @default.
- W3138289328 doi "https://doi.org/10.1108/sasbe-01-2021-0010" @default.
- W3138289328 hasPublicationYear "2021" @default.
- W3138289328 type Work @default.
- W3138289328 sameAs 3138289328 @default.
- W3138289328 citedByCount "6" @default.
- W3138289328 countsByYear W31382893282021 @default.
- W3138289328 countsByYear W31382893282022 @default.
- W3138289328 countsByYear W31382893282023 @default.
- W3138289328 crossrefType "journal-article" @default.
- W3138289328 hasAuthorship W3138289328A5049257114 @default.
- W3138289328 hasConcept C108583219 @default.
- W3138289328 hasConcept C11012388 @default.
- W3138289328 hasConcept C11413529 @default.
- W3138289328 hasConcept C119857082 @default.
- W3138289328 hasConcept C127413603 @default.
- W3138289328 hasConcept C146978453 @default.
- W3138289328 hasConcept C153180895 @default.
- W3138289328 hasConcept C154945302 @default.
- W3138289328 hasConcept C168820333 @default.
- W3138289328 hasConcept C17744445 @default.
- W3138289328 hasConcept C199539241 @default.
- W3138289328 hasConcept C2776950860 @default.
- W3138289328 hasConcept C41008148 @default.
- W3138289328 hasConcept C93226319 @default.
- W3138289328 hasConceptScore W3138289328C108583219 @default.
- W3138289328 hasConceptScore W3138289328C11012388 @default.
- W3138289328 hasConceptScore W3138289328C11413529 @default.
- W3138289328 hasConceptScore W3138289328C119857082 @default.
- W3138289328 hasConceptScore W3138289328C127413603 @default.
- W3138289328 hasConceptScore W3138289328C146978453 @default.
- W3138289328 hasConceptScore W3138289328C153180895 @default.
- W3138289328 hasConceptScore W3138289328C154945302 @default.
- W3138289328 hasConceptScore W3138289328C168820333 @default.
- W3138289328 hasConceptScore W3138289328C17744445 @default.
- W3138289328 hasConceptScore W3138289328C199539241 @default.