Matches in SemOpenAlex for { <https://semopenalex.org/work/W3138346380> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W3138346380 endingPage "315" @default.
- W3138346380 startingPage "289" @default.
- W3138346380 abstract "Abstract This article on nonconforming schemes for m harmonic problems simultaneously treats the Crouzeix–Raviart ( <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mrow> <m:mi>m</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> </m:math> {m=1} ) and the Morley finite elements ( <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mrow> <m:mi>m</m:mi> <m:mo>=</m:mo> <m:mn>2</m:mn> </m:mrow> </m:math> {m=2} ) for the original and for modified right-hand side F in the dual space <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mrow> <m:msup> <m:mi>V</m:mi> <m:mo>*</m:mo> </m:msup> <m:mo>:=</m:mo> <m:mrow> <m:msup> <m:mi>H</m:mi> <m:mrow> <m:mo>-</m:mo> <m:mi>m</m:mi> </m:mrow> </m:msup> <m:mo></m:mo> <m:mrow> <m:mo stretchy=false>(</m:mo> <m:mi mathvariant=normal>Ω</m:mi> <m:mo stretchy=false>)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> {V^{*}:=H^{-m}(Omega)} to the energy space <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mrow> <m:mi>V</m:mi> <m:mo>:=</m:mo> <m:mrow> <m:msubsup> <m:mi>H</m:mi> <m:mn>0</m:mn> <m:mi>m</m:mi> </m:msubsup> <m:mo></m:mo> <m:mrow> <m:mo stretchy=false>(</m:mo> <m:mi mathvariant=normal>Ω</m:mi> <m:mo stretchy=false>)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> {V:=H^{m}_{0}(Omega)} . The smoother <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mrow> <m:mi>J</m:mi> <m:mo>:</m:mo> <m:mrow> <m:msub> <m:mi>V</m:mi> <m:mi>nc</m:mi> </m:msub> <m:mo>→</m:mo> <m:mi>V</m:mi> </m:mrow> </m:mrow> </m:math> {J:V_{mathrm{nc}}to V} in this paper is a companion operator, that is a linear and bounded right-inverse to the nonconforming interpolation operator <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mrow> <m:msub> <m:mi>I</m:mi> <m:mi>nc</m:mi> </m:msub> <m:mo>:</m:mo> <m:mrow> <m:mi>V</m:mi> <m:mo>→</m:mo> <m:msub> <m:mi>V</m:mi> <m:mi>nc</m:mi> </m:msub> </m:mrow> </m:mrow> </m:math> {I_{mathrm{nc}}:Vto V_{mathrm{nc}}} , and modifies the discrete right-hand side <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mrow> <m:msub> <m:mi>F</m:mi> <m:mi>h</m:mi> </m:msub> <m:mo>:=</m:mo> <m:mrow> <m:mi>F</m:mi> <m:mo>∘</m:mo> <m:mi>J</m:mi> </m:mrow> <m:mo>∈</m:mo> <m:msubsup> <m:mi>V</m:mi> <m:mi>nc</m:mi> <m:mo>*</m:mo> </m:msubsup> </m:mrow> </m:math> {F_{h}:=Fcirc Jin V_{mathrm{nc}}^{*}} . The best-approximation property of the modified scheme from Veeser et al. (2018) is recovered and complemented with an analysis of the convergence rates in weaker Sobolev norms. Examples with oscillating data show that the original method may fail to enjoy the best-approximation property but can also be better than the modified scheme. The a posteriori analysis of this paper concerns data oscillations of various types in a class of right-hand sides <m:math xmlns:m=http://www.w3.org/1998/Math/MathML> <m:mrow> <m:mi>F</m:mi> <m:mo>∈</m:mo> <m:msup> <m:mi>V</m:mi> <m:mo>*</m:mo> </m:msup> </m:mrow> </m:math> {Fin V^{*}} . The reliable error estimates involve explicit constants and can be recommended for explicit error control of the piecewise energy norm. The efficiency follows solely up to data oscillations and examples illustrate this can be problematic." @default.
- W3138346380 created "2021-03-29" @default.
- W3138346380 creator A5019365126 @default.
- W3138346380 creator A5036808184 @default.
- W3138346380 date "2021-03-11" @default.
- W3138346380 modified "2023-10-15" @default.
- W3138346380 title "A Priori and a Posteriori Error Analysis of the Crouzeix–Raviart and Morley FEM with Original and Modified Right-Hand Sides" @default.
- W3138346380 cites W1585767079 @default.
- W3138346380 cites W1866311589 @default.
- W3138346380 cites W1970446082 @default.
- W3138346380 cites W1970753375 @default.
- W3138346380 cites W1973103891 @default.
- W3138346380 cites W1975039968 @default.
- W3138346380 cites W1985605456 @default.
- W3138346380 cites W1991670087 @default.
- W3138346380 cites W2008008473 @default.
- W3138346380 cites W2012900529 @default.
- W3138346380 cites W2017366188 @default.
- W3138346380 cites W2019685695 @default.
- W3138346380 cites W2029129352 @default.
- W3138346380 cites W2035654636 @default.
- W3138346380 cites W2048407683 @default.
- W3138346380 cites W2058824833 @default.
- W3138346380 cites W2062819342 @default.
- W3138346380 cites W2063683773 @default.
- W3138346380 cites W2066976371 @default.
- W3138346380 cites W2071902409 @default.
- W3138346380 cites W2082866666 @default.
- W3138346380 cites W2110176271 @default.
- W3138346380 cites W2110649199 @default.
- W3138346380 cites W2122461891 @default.
- W3138346380 cites W2130724727 @default.
- W3138346380 cites W2134359783 @default.
- W3138346380 cites W2137365186 @default.
- W3138346380 cites W2151369319 @default.
- W3138346380 cites W2154569883 @default.
- W3138346380 cites W2155803011 @default.
- W3138346380 cites W2172266329 @default.
- W3138346380 cites W2491027544 @default.
- W3138346380 cites W253824085 @default.
- W3138346380 cites W2592623476 @default.
- W3138346380 cites W280547473 @default.
- W3138346380 cites W2893822386 @default.
- W3138346380 cites W2962763863 @default.
- W3138346380 cites W2962798524 @default.
- W3138346380 cites W2963027749 @default.
- W3138346380 cites W2963817075 @default.
- W3138346380 cites W2964056873 @default.
- W3138346380 cites W3004866040 @default.
- W3138346380 cites W3021640518 @default.
- W3138346380 cites W3151070817 @default.
- W3138346380 cites W4210300254 @default.
- W3138346380 cites W4302819252 @default.
- W3138346380 cites W4385684942 @default.
- W3138346380 doi "https://doi.org/10.1515/cmam-2021-0029" @default.
- W3138346380 hasPublicationYear "2021" @default.
- W3138346380 type Work @default.
- W3138346380 sameAs 3138346380 @default.
- W3138346380 citedByCount "9" @default.
- W3138346380 countsByYear W31383463802021 @default.
- W3138346380 countsByYear W31383463802022 @default.
- W3138346380 countsByYear W31383463802023 @default.
- W3138346380 crossrefType "journal-article" @default.
- W3138346380 hasAuthorship W3138346380A5019365126 @default.
- W3138346380 hasAuthorship W3138346380A5036808184 @default.
- W3138346380 hasBestOaLocation W31383463802 @default.
- W3138346380 hasConcept C114614502 @default.
- W3138346380 hasConcept C121332964 @default.
- W3138346380 hasConcept C33923547 @default.
- W3138346380 hasConceptScore W3138346380C114614502 @default.
- W3138346380 hasConceptScore W3138346380C121332964 @default.
- W3138346380 hasConceptScore W3138346380C33923547 @default.
- W3138346380 hasFunder F4320320879 @default.
- W3138346380 hasIssue "2" @default.
- W3138346380 hasLocation W31383463801 @default.
- W3138346380 hasLocation W31383463802 @default.
- W3138346380 hasOpenAccess W3138346380 @default.
- W3138346380 hasPrimaryLocation W31383463801 @default.
- W3138346380 hasRelatedWork W2271181815 @default.
- W3138346380 hasRelatedWork W2902782467 @default.
- W3138346380 hasRelatedWork W2935759653 @default.
- W3138346380 hasRelatedWork W3105167352 @default.
- W3138346380 hasRelatedWork W3148032049 @default.
- W3138346380 hasRelatedWork W54078636 @default.
- W3138346380 hasRelatedWork W1501425562 @default.
- W3138346380 hasRelatedWork W2298861036 @default.
- W3138346380 hasRelatedWork W2954470139 @default.
- W3138346380 hasRelatedWork W3084825885 @default.
- W3138346380 hasVolume "21" @default.
- W3138346380 isParatext "false" @default.
- W3138346380 isRetracted "false" @default.
- W3138346380 magId "3138346380" @default.
- W3138346380 workType "article" @default.