Matches in SemOpenAlex for { <https://semopenalex.org/work/W3138354804> ?p ?o ?g. }
- W3138354804 endingPage "446" @default.
- W3138354804 startingPage "430" @default.
- W3138354804 abstract "Aim: In this work, we propose the novel use of adaptively constrained independent vector analysis (acIVA) to effectively capture the temporal and spatial properties of dynamic blood-oxygen-level-dependent (BOLD) activity (dBA), and we efficiently quantify the spatial property of dBA (sdBA). We also propose to incorporate dBA into the study of brain dynamics to gain insight into activity-connectivity co-evolution patterns. Introduction: Studies of the dynamics of the human brain using functional magnetic resonance imaging (fMRI) have enabled the identification of unique functional network connectivity (FNC) states and provided new insights into mental disorders. There is evidence showing that both BOLD activity, which is captured by fMRI, and FNC are related to mental and cognitive processes. However, a few studies have evaluated the inter-relationships of these two domains of function. Moreover, the identification of subgroups of schizophrenia has gained significant clinical importance due to a need to study the heterogeneity of schizophrenia. Methods: We design a simulation study to verify the effectiveness of acIVA and apply acIVA to the dynamic study of resting-state fMRI data collected from individuals with schizophrenia and healthy controls (HCs) to investigate the relationship between dBA and dynamic FNC (dFNC). Results: The simulation study demonstrates that acIVA accurately captures the spatial variability and provides an efficient quantification of sdBA. The fMRI analysis yields synchronized sdBA-temporal property of dBA (tdBA) patterns and shows that the dBA and dFNC are significantly correlated in the spatial domain. Using these dynamic features, we identify schizophrenia subgroups with significant differences in terms of their clinical symptoms. Conclusion: We find that brain function is abnormally organized in schizophrenia compared with HCs since there are less synchronized sdBA-tdBA patterns in schizophrenia and schizophrenia prefers a component that merges multiple brain regions. Identification of schizophrenia subgroups using dynamic features inspires the use of neuroimaging in studying the heterogeneity of disorders. Impact statement This work introduces the use of joint blind source separation for the study of brain dynamics to enable efficient quantification of the spatial property of dynamic blood-oxygen-level-dependent (BOLD) activity to provide insight into the relationship of dynamic BOLD activity and dynamic functional network connectivity. The identification of subgroups of schizophrenia using dynamic features allows the study of heterogeneity of schizophrenia, emphasizing the importance of functional magnetic resonance imaging analysis in the study of brain activity and functional connectivity to gain a better understanding of the human brain, especially the brain with a mental disorder." @default.
- W3138354804 created "2021-03-29" @default.
- W3138354804 creator A5032850756 @default.
- W3138354804 creator A5060798483 @default.
- W3138354804 creator A5079732715 @default.
- W3138354804 creator A5082337594 @default.
- W3138354804 date "2021-08-01" @default.
- W3138354804 modified "2023-10-16" @default.
- W3138354804 title "Relationship between Dynamic Blood-Oxygen-Level-Dependent Activity and Functional Network Connectivity: Characterization of Schizophrenia Subgroups" @default.
- W3138354804 cites W1219612698 @default.
- W3138354804 cites W1552598564 @default.
- W3138354804 cites W1701278259 @default.
- W3138354804 cites W1881629687 @default.
- W3138354804 cites W1940493538 @default.
- W3138354804 cites W1965282367 @default.
- W3138354804 cites W1968248619 @default.
- W3138354804 cites W1972562599 @default.
- W3138354804 cites W1973741448 @default.
- W3138354804 cites W1974590317 @default.
- W3138354804 cites W1975453639 @default.
- W3138354804 cites W1979283977 @default.
- W3138354804 cites W1985327120 @default.
- W3138354804 cites W1991840148 @default.
- W3138354804 cites W2001125351 @default.
- W3138354804 cites W2001870301 @default.
- W3138354804 cites W2003346255 @default.
- W3138354804 cites W2021620877 @default.
- W3138354804 cites W2025811576 @default.
- W3138354804 cites W2025832022 @default.
- W3138354804 cites W2031677665 @default.
- W3138354804 cites W2058187841 @default.
- W3138354804 cites W2063167566 @default.
- W3138354804 cites W2068924227 @default.
- W3138354804 cites W2072481403 @default.
- W3138354804 cites W2082098782 @default.
- W3138354804 cites W2088466641 @default.
- W3138354804 cites W2092872141 @default.
- W3138354804 cites W2095491050 @default.
- W3138354804 cites W2097271689 @default.
- W3138354804 cites W2098646031 @default.
- W3138354804 cites W2099935324 @default.
- W3138354804 cites W2100634972 @default.
- W3138354804 cites W2101219946 @default.
- W3138354804 cites W2116649573 @default.
- W3138354804 cites W2123510839 @default.
- W3138354804 cites W2128239595 @default.
- W3138354804 cites W2130419668 @default.
- W3138354804 cites W2130654277 @default.
- W3138354804 cites W2130671706 @default.
- W3138354804 cites W2132022182 @default.
- W3138354804 cites W2136763679 @default.
- W3138354804 cites W2137813980 @default.
- W3138354804 cites W2140606211 @default.
- W3138354804 cites W2144935618 @default.
- W3138354804 cites W2145958837 @default.
- W3138354804 cites W2149982093 @default.
- W3138354804 cites W2153218372 @default.
- W3138354804 cites W2154540835 @default.
- W3138354804 cites W2155125375 @default.
- W3138354804 cites W2156874786 @default.
- W3138354804 cites W2161502085 @default.
- W3138354804 cites W2162615138 @default.
- W3138354804 cites W2164243096 @default.
- W3138354804 cites W2165793012 @default.
- W3138354804 cites W2167265771 @default.
- W3138354804 cites W2170702893 @default.
- W3138354804 cites W2212230184 @default.
- W3138354804 cites W2302615477 @default.
- W3138354804 cites W2343802789 @default.
- W3138354804 cites W2513244587 @default.
- W3138354804 cites W2570188605 @default.
- W3138354804 cites W2616931359 @default.
- W3138354804 cites W2732140194 @default.
- W3138354804 cites W2747936636 @default.
- W3138354804 cites W2755694539 @default.
- W3138354804 cites W2791425749 @default.
- W3138354804 cites W2795965218 @default.
- W3138354804 cites W2801360208 @default.
- W3138354804 cites W2807064931 @default.
- W3138354804 cites W2809181187 @default.
- W3138354804 cites W2885338861 @default.
- W3138354804 cites W2891624892 @default.
- W3138354804 cites W2903127325 @default.
- W3138354804 cites W2913406796 @default.
- W3138354804 cites W2949962615 @default.
- W3138354804 cites W2950455940 @default.
- W3138354804 cites W2971494328 @default.
- W3138354804 cites W2975066817 @default.
- W3138354804 cites W3001572095 @default.
- W3138354804 cites W3015182751 @default.
- W3138354804 cites W3021352772 @default.
- W3138354804 cites W4295835971 @default.
- W3138354804 doi "https://doi.org/10.1089/brain.2020.0815" @default.
- W3138354804 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8388253" @default.
- W3138354804 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33724055" @default.
- W3138354804 hasPublicationYear "2021" @default.
- W3138354804 type Work @default.
- W3138354804 sameAs 3138354804 @default.