Matches in SemOpenAlex for { <https://semopenalex.org/work/W3138357798> ?p ?o ?g. }
- W3138357798 abstract "Abstract Chest X-ray (CXR) is one of the most commonly performed medical imaging tests. Although aging, sex and disease status have been known to cause changes in CXR findings, the extent of these effects has not been fully characterized. Here, we present a deep neural network (DNN) model trained using more than 100,000 CXRs to estimate the patient’s age and sex solely from CXRs. Our DNN exhibited high performance in terms of estimating age and sex, with Pearson’s correlation coefficient between the actual and estimated age of above 0.9 and an area under the ROC curve of 0.98 for sex estimation. The difference between the actual and estimated age is large in CXRs with abnormal findings, suggesting that the estimated age (“CXR age”) can be a biomarker for disease status. Furthermore, by applying our DNN to CXRs of consecutive 1,562 hospitalized heart failure patients, we demonstrated that an elevated CXR age is not only associated with aging-related diseases, such as hypertension and atrial fibrillation, but also a worse outcome of heart failure. Given these results, our new concept “CXR age” serves as a novel biomarker for cardiovascular aging and can help clinicians to predict, prevent, and manage cardiovascular diseases." @default.
- W3138357798 created "2021-03-29" @default.
- W3138357798 creator A5001616072 @default.
- W3138357798 creator A5003165755 @default.
- W3138357798 creator A5010690225 @default.
- W3138357798 creator A5019042345 @default.
- W3138357798 creator A5028895701 @default.
- W3138357798 creator A5032187153 @default.
- W3138357798 creator A5034898696 @default.
- W3138357798 creator A5036145018 @default.
- W3138357798 creator A5044657759 @default.
- W3138357798 creator A5045436157 @default.
- W3138357798 creator A5047611581 @default.
- W3138357798 creator A5049657892 @default.
- W3138357798 creator A5050954941 @default.
- W3138357798 creator A5053237195 @default.
- W3138357798 creator A5057781163 @default.
- W3138357798 creator A5066658224 @default.
- W3138357798 creator A5072467149 @default.
- W3138357798 creator A5075891497 @default.
- W3138357798 creator A5080197928 @default.
- W3138357798 creator A5081420079 @default.
- W3138357798 creator A5091782480 @default.
- W3138357798 date "2021-03-25" @default.
- W3138357798 modified "2023-10-01" @default.
- W3138357798 title "Deep learning-based chest X-ray age serves as a novel biomarker for cardiovascular aging" @default.
- W3138357798 cites W1682043670 @default.
- W3138357798 cites W1992318630 @default.
- W3138357798 cites W2002782486 @default.
- W3138357798 cites W2004733118 @default.
- W3138357798 cites W2019566532 @default.
- W3138357798 cites W2068674397 @default.
- W3138357798 cites W2100142648 @default.
- W3138357798 cites W2117812871 @default.
- W3138357798 cites W2124454279 @default.
- W3138357798 cites W2125657956 @default.
- W3138357798 cites W2142514727 @default.
- W3138357798 cites W2164847599 @default.
- W3138357798 cites W2167423131 @default.
- W3138357798 cites W2172453279 @default.
- W3138357798 cites W2285222531 @default.
- W3138357798 cites W2323862874 @default.
- W3138357798 cites W2581082771 @default.
- W3138357798 cites W2598182906 @default.
- W3138357798 cites W2600453013 @default.
- W3138357798 cites W2741010001 @default.
- W3138357798 cites W2760946358 @default.
- W3138357798 cites W2788633781 @default.
- W3138357798 cites W2883464116 @default.
- W3138357798 cites W2886281300 @default.
- W3138357798 cites W2889669803 @default.
- W3138357798 cites W2896287590 @default.
- W3138357798 cites W2901226889 @default.
- W3138357798 cites W2902644322 @default.
- W3138357798 cites W2919115771 @default.
- W3138357798 cites W2940487144 @default.
- W3138357798 cites W2940573450 @default.
- W3138357798 cites W2942777796 @default.
- W3138357798 cites W2944949113 @default.
- W3138357798 cites W2946185430 @default.
- W3138357798 cites W2954996726 @default.
- W3138357798 cites W2963300950 @default.
- W3138357798 cites W2963420686 @default.
- W3138357798 cites W2964433937 @default.
- W3138357798 cites W2965520043 @default.
- W3138357798 cites W2970154784 @default.
- W3138357798 cites W2977685912 @default.
- W3138357798 cites W2994569435 @default.
- W3138357798 cites W2998401461 @default.
- W3138357798 cites W3001639610 @default.
- W3138357798 cites W3080301222 @default.
- W3138357798 cites W3099085560 @default.
- W3138357798 cites W3121930650 @default.
- W3138357798 cites W4256167549 @default.
- W3138357798 doi "https://doi.org/10.1101/2021.03.24.436773" @default.
- W3138357798 hasPublicationYear "2021" @default.
- W3138357798 type Work @default.
- W3138357798 sameAs 3138357798 @default.
- W3138357798 citedByCount "3" @default.
- W3138357798 countsByYear W31383577982021 @default.
- W3138357798 countsByYear W31383577982022 @default.
- W3138357798 countsByYear W31383577982023 @default.
- W3138357798 crossrefType "posted-content" @default.
- W3138357798 hasAuthorship W3138357798A5001616072 @default.
- W3138357798 hasAuthorship W3138357798A5003165755 @default.
- W3138357798 hasAuthorship W3138357798A5010690225 @default.
- W3138357798 hasAuthorship W3138357798A5019042345 @default.
- W3138357798 hasAuthorship W3138357798A5028895701 @default.
- W3138357798 hasAuthorship W3138357798A5032187153 @default.
- W3138357798 hasAuthorship W3138357798A5034898696 @default.
- W3138357798 hasAuthorship W3138357798A5036145018 @default.
- W3138357798 hasAuthorship W3138357798A5044657759 @default.
- W3138357798 hasAuthorship W3138357798A5045436157 @default.
- W3138357798 hasAuthorship W3138357798A5047611581 @default.
- W3138357798 hasAuthorship W3138357798A5049657892 @default.
- W3138357798 hasAuthorship W3138357798A5050954941 @default.
- W3138357798 hasAuthorship W3138357798A5053237195 @default.
- W3138357798 hasAuthorship W3138357798A5057781163 @default.
- W3138357798 hasAuthorship W3138357798A5066658224 @default.
- W3138357798 hasAuthorship W3138357798A5072467149 @default.