Matches in SemOpenAlex for { <https://semopenalex.org/work/W3138361027> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W3138361027 endingPage "S477" @default.
- W3138361027 startingPage "S477" @default.
- W3138361027 abstract "Improving stratification of patients with indeterminate pulmonary nodules (IPNs) can lead both to earlier diagnosis of lung cancer and to reduced scanning and reduced intervention in cases of benign disease. AI-based decision support software has been shown to outperform conventional risk models at classifying IPNs as low or high risk, but its performance in addition to clinician assessment has yet to be investigated. We report the results of a Multiple-Reader Multiple-Case reader evaluation comparing reader performance for both radiologists and pulmonologists on an IPN risk stratification task with and without AI assistance from the previously-published Lung Cancer Prediction Convolutional Neural Network (LCP-CNN). A pool of 12 readers interpreted 100 non-contrast chest CTs each with at least one IPN. The reader breakdown was 7 radiologists, 5 pulmonologists. 7 were UK and 5 US, with representation from both specialties in both geographic zones. They ranged in experience from registrar (resident) to consultant (attending). Readers interacted with viewing software in which they could scroll through axial slices, and adjust window/level settings, but were blinded to patient clinical information. Readers first estimated the likelihood of malignancy for each nodule independently (solo-LoM) as a percentage. The reader was then provided with the AI score as a number from 1-10 and allowed to update assessment of LoM (assisted-LoM). The dataset comprised 50 histologically-diagnosed primary lung cancers (median 10.1mm, IQR 8-13mm) and 50 benign nodules (median 8.8mm, IQR 7-11mm). The nodules were detected incidentally at six EU centres, and were all 5-15mm in size at detection, in patients of 18+ years without a history of malignancy in the past 5 years. Performance was analysed comparing the Area Under the ROC curve (AUC) for the solo-LoM and assisted-LoM. CIs and P-values were calculated using bootstrapping. The average pre-AI AUC over all readers was 76.6 (95%CI 68.7-83.7), and 84.3 (77.2-90.6) when assisted by AI (P<.0001). The mean improvement over the set of readers is 7.7 points of AUC (95%CI 4.6-11.0). Table 1 shows the performance on a per-reader basis. All readers improved when assisted by the AI, and the improvement was significant in 10/12 readers at the 0.05 level.Table 1Performance on per-reader basisReader #AUC pre-AIAUC post-AIAUC improvementP value181.1 (72.1-89.1)88.0 (81.0-93.8)6.9 (1.8-12.4).004274.5 (64.5-83.5)81.9 (73.4-89.2)7.4 (3.2-12.3)<.001380.7 (71.3-89.1)83.1 (74.0-91.2)2.5 (0.0-5.4).024476.5 (66.4-85.7)87.6 (80.3-93.7)11.2 (4.3-18.6)<.001580.2 (71.3-87.9)82.1 (73.6-89.3)1.9 (-0.6-4.4).066671.6 (61.2-81.0)83.7 (75.5-90.7)12.1 (6.7-18.3)<.001770.6 (60.1-80.0)85.5 (77.8-92.2)14.9 (7.3-23.3)<.001876.4 (66.6-85.1)85.2 (77.4-91.9)8.8 (1.2-16.7).012980.3 (71.3-88.3)82.3 (73.8-89.8)2.0 (-1.2-5.1).1051078.1 (68.6-86.5)85.4 (77.5-92.1)7.3 (2.6-12.3)<.0011172.0 (61.6-81.3)82.6 (74.1-90.1)10.6 (5.0-16.8)<.0011276.8 (67.2-85.5)84.1 (76.0-91.1)7.3 (2.9-12.2)<.001 Open table in a new tab Radiologists and pulmonologists were able to significantly improve their assessment of the likelihood of malignancy for an IPN when assisted by AI score." @default.
- W3138361027 created "2021-03-29" @default.
- W3138361027 creator A5006042551 @default.
- W3138361027 creator A5021621732 @default.
- W3138361027 creator A5023794918 @default.
- W3138361027 creator A5029883989 @default.
- W3138361027 creator A5032478188 @default.
- W3138361027 creator A5037072010 @default.
- W3138361027 creator A5038386157 @default.
- W3138361027 creator A5041302318 @default.
- W3138361027 creator A5046226248 @default.
- W3138361027 creator A5052717708 @default.
- W3138361027 creator A5060405459 @default.
- W3138361027 creator A5061560898 @default.
- W3138361027 creator A5067501341 @default.
- W3138361027 creator A5068774836 @default.
- W3138361027 creator A5071189596 @default.
- W3138361027 date "2021-03-01" @default.
- W3138361027 modified "2023-09-26" @default.
- W3138361027 title "P42.01 AI Assistance for Pulmonary Nodule Stratification: An Multiple-Reader Multiple-Case Study" @default.
- W3138361027 doi "https://doi.org/10.1016/j.jtho.2021.01.825" @default.
- W3138361027 hasPublicationYear "2021" @default.
- W3138361027 type Work @default.
- W3138361027 sameAs 3138361027 @default.
- W3138361027 citedByCount "0" @default.
- W3138361027 crossrefType "journal-article" @default.
- W3138361027 hasAuthorship W3138361027A5006042551 @default.
- W3138361027 hasAuthorship W3138361027A5021621732 @default.
- W3138361027 hasAuthorship W3138361027A5023794918 @default.
- W3138361027 hasAuthorship W3138361027A5029883989 @default.
- W3138361027 hasAuthorship W3138361027A5032478188 @default.
- W3138361027 hasAuthorship W3138361027A5037072010 @default.
- W3138361027 hasAuthorship W3138361027A5038386157 @default.
- W3138361027 hasAuthorship W3138361027A5041302318 @default.
- W3138361027 hasAuthorship W3138361027A5046226248 @default.
- W3138361027 hasAuthorship W3138361027A5052717708 @default.
- W3138361027 hasAuthorship W3138361027A5060405459 @default.
- W3138361027 hasAuthorship W3138361027A5061560898 @default.
- W3138361027 hasAuthorship W3138361027A5067501341 @default.
- W3138361027 hasAuthorship W3138361027A5068774836 @default.
- W3138361027 hasAuthorship W3138361027A5071189596 @default.
- W3138361027 hasBestOaLocation W31383610271 @default.
- W3138361027 hasConcept C126322002 @default.
- W3138361027 hasConcept C126838900 @default.
- W3138361027 hasConcept C151730666 @default.
- W3138361027 hasConcept C177713679 @default.
- W3138361027 hasConcept C2776256026 @default.
- W3138361027 hasConcept C2776731575 @default.
- W3138361027 hasConcept C2777405583 @default.
- W3138361027 hasConcept C2779399171 @default.
- W3138361027 hasConcept C2780244788 @default.
- W3138361027 hasConcept C2908861384 @default.
- W3138361027 hasConcept C3020404979 @default.
- W3138361027 hasConcept C544519230 @default.
- W3138361027 hasConcept C71924100 @default.
- W3138361027 hasConcept C86803240 @default.
- W3138361027 hasConceptScore W3138361027C126322002 @default.
- W3138361027 hasConceptScore W3138361027C126838900 @default.
- W3138361027 hasConceptScore W3138361027C151730666 @default.
- W3138361027 hasConceptScore W3138361027C177713679 @default.
- W3138361027 hasConceptScore W3138361027C2776256026 @default.
- W3138361027 hasConceptScore W3138361027C2776731575 @default.
- W3138361027 hasConceptScore W3138361027C2777405583 @default.
- W3138361027 hasConceptScore W3138361027C2779399171 @default.
- W3138361027 hasConceptScore W3138361027C2780244788 @default.
- W3138361027 hasConceptScore W3138361027C2908861384 @default.
- W3138361027 hasConceptScore W3138361027C3020404979 @default.
- W3138361027 hasConceptScore W3138361027C544519230 @default.
- W3138361027 hasConceptScore W3138361027C71924100 @default.
- W3138361027 hasConceptScore W3138361027C86803240 @default.
- W3138361027 hasIssue "3" @default.
- W3138361027 hasLocation W31383610271 @default.
- W3138361027 hasOpenAccess W3138361027 @default.
- W3138361027 hasPrimaryLocation W31383610271 @default.
- W3138361027 hasRelatedWork W1514650927 @default.
- W3138361027 hasRelatedWork W2085957879 @default.
- W3138361027 hasRelatedWork W2119553938 @default.
- W3138361027 hasRelatedWork W2124254241 @default.
- W3138361027 hasRelatedWork W2278533172 @default.
- W3138361027 hasRelatedWork W2923822213 @default.
- W3138361027 hasRelatedWork W4206218075 @default.
- W3138361027 hasRelatedWork W4220674082 @default.
- W3138361027 hasRelatedWork W54659473 @default.
- W3138361027 hasRelatedWork W2481187507 @default.
- W3138361027 hasVolume "16" @default.
- W3138361027 isParatext "false" @default.
- W3138361027 isRetracted "false" @default.
- W3138361027 magId "3138361027" @default.
- W3138361027 workType "article" @default.