Matches in SemOpenAlex for { <https://semopenalex.org/work/W3138361429> ?p ?o ?g. }
- W3138361429 abstract "Abstract Biosynthesis of sterols, which are key constituents of canonical eukaryotic membranes, requires molecular oxygen. Anaerobic protists and deep-branching anaerobic fungi are the only eukaryotes in which a mechanism for sterol-independent growth has been elucidated. In these organisms, tetrahymanol, formed through oxygen-independent cyclization of squalene by a squalene-tetrahymanol cyclase, acts as a sterol surrogate. This study confirms an early report (Bulder (1971), Antonie Van Leeuwenhoek, 37, 353–358) that Schizosaccharomyces japonicus is exceptional among yeasts in growing anaerobically on synthetic media lacking sterols and unsaturated fatty acids. Mass spectrometry of lipid fractions of anaerobically grown Sch. japonicus showed the presence of hopanoids, a class of cyclic triterpenoids not previously detected in yeasts, including hop-22(29)-ene, hop-17(21)-ene, hop-21(22)-ene and hopan-22-ol. A putative gene in Sch. japonicus showed high similarity to bacterial squalene-hopene cyclase (SHC) genes and in particular to those of Acetobacter species. No orthologs of the putative Sch. japonicus SHC were found in other yeast species. Expression of the Sch. japonicus SHC gene ( Sjshc1 ) in Saccharomyces cerevisiae enabled hopanoid synthesis and supported ergosterol-independent anaerobic growth, thus confirming that one or more of the hopanoids produced by SjShc1 can act as ergosterol surrogate in anaerobic yeast cultures. Use of hopanoids as sterol surrogates represents a previously unknown adaptation of eukaryotic cells to anaerobic growth. The fast sterol-independent anaerobic growth of Sch. japonicus is an interesting trait for developing robust fungal cell factories for application in anaerobic industrial processes. Significance statement Biosynthesis of sterols requires oxygen. This study identifies a previously unknown evolutionary adaptation in a eukaryote, which enables anaerobic growth in absence of exogenous sterols. A squalene-hopene cyclase, proposed to have been acquired by horizontal gene transfer from an acetic acid bacterium, is implicated in a unique ability of the yeast Schizosaccharomyces japonicus to synthesize hopanoids and grow in anaerobic, sterol-free media. Expression of this cyclase in S. cerevisiae confirmed that at least one of its hopanoid products acts as sterol-surrogate. The involvement of hopanoids in sterol-independent growth of this yeast provides new leads for research into the structure and function of eukaryotic membranes, and into the development of sterol-independent yeast cell factories for application in anaerobic processes." @default.
- W3138361429 created "2021-03-29" @default.
- W3138361429 creator A5026554824 @default.
- W3138361429 creator A5027093666 @default.
- W3138361429 creator A5034977558 @default.
- W3138361429 creator A5065500580 @default.
- W3138361429 creator A5066402792 @default.
- W3138361429 creator A5072791331 @default.
- W3138361429 creator A5079415104 @default.
- W3138361429 creator A5087000945 @default.
- W3138361429 date "2021-03-17" @default.
- W3138361429 modified "2023-10-16" @default.
- W3138361429 title "A squalene-hopene cyclase in<i>Schizosaccharomyces japonicus</i>represents a eukaryotic adaptation to sterol-independent anaerobic growth" @default.
- W3138361429 cites W1483456869 @default.
- W3138361429 cites W1484626650 @default.
- W3138361429 cites W1578038611 @default.
- W3138361429 cites W1736843925 @default.
- W3138361429 cites W180327766 @default.
- W3138361429 cites W1969583685 @default.
- W3138361429 cites W1971275313 @default.
- W3138361429 cites W1981919911 @default.
- W3138361429 cites W1982855075 @default.
- W3138361429 cites W1983366533 @default.
- W3138361429 cites W1988992269 @default.
- W3138361429 cites W1996173391 @default.
- W3138361429 cites W2004877121 @default.
- W3138361429 cites W2008033809 @default.
- W3138361429 cites W2014731291 @default.
- W3138361429 cites W2016033442 @default.
- W3138361429 cites W2027296419 @default.
- W3138361429 cites W2030319521 @default.
- W3138361429 cites W2031998547 @default.
- W3138361429 cites W2032661891 @default.
- W3138361429 cites W2035176528 @default.
- W3138361429 cites W2039609168 @default.
- W3138361429 cites W2045641954 @default.
- W3138361429 cites W2049060804 @default.
- W3138361429 cites W2053480525 @default.
- W3138361429 cites W2059877187 @default.
- W3138361429 cites W2062590304 @default.
- W3138361429 cites W2070456262 @default.
- W3138361429 cites W2073715954 @default.
- W3138361429 cites W2075889739 @default.
- W3138361429 cites W2077499742 @default.
- W3138361429 cites W2082317854 @default.
- W3138361429 cites W2096336948 @default.
- W3138361429 cites W2101291993 @default.
- W3138361429 cites W2101442503 @default.
- W3138361429 cites W2102652793 @default.
- W3138361429 cites W2112956106 @default.
- W3138361429 cites W2115420193 @default.
- W3138361429 cites W2115888213 @default.
- W3138361429 cites W2117761284 @default.
- W3138361429 cites W2125393058 @default.
- W3138361429 cites W212704185 @default.
- W3138361429 cites W2130412392 @default.
- W3138361429 cites W2136558879 @default.
- W3138361429 cites W2138921237 @default.
- W3138361429 cites W2143638048 @default.
- W3138361429 cites W2143913679 @default.
- W3138361429 cites W2148694111 @default.
- W3138361429 cites W2151526914 @default.
- W3138361429 cites W2152301818 @default.
- W3138361429 cites W2154291340 @default.
- W3138361429 cites W2160378127 @default.
- W3138361429 cites W2162426871 @default.
- W3138361429 cites W2170758691 @default.
- W3138361429 cites W2320576388 @default.
- W3138361429 cites W2336330109 @default.
- W3138361429 cites W2403010495 @default.
- W3138361429 cites W2461919869 @default.
- W3138361429 cites W2590425683 @default.
- W3138361429 cites W2604701675 @default.
- W3138361429 cites W2606408228 @default.
- W3138361429 cites W2616601599 @default.
- W3138361429 cites W2617996071 @default.
- W3138361429 cites W2750791471 @default.
- W3138361429 cites W2774450332 @default.
- W3138361429 cites W2788228074 @default.
- W3138361429 cites W2793937965 @default.
- W3138361429 cites W2884995279 @default.
- W3138361429 cites W2939533762 @default.
- W3138361429 cites W2949204090 @default.
- W3138361429 cites W2949867654 @default.
- W3138361429 cites W2969306840 @default.
- W3138361429 cites W2969974783 @default.
- W3138361429 cites W2970503599 @default.
- W3138361429 cites W2984877525 @default.
- W3138361429 cites W2999430643 @default.
- W3138361429 cites W3119487299 @default.
- W3138361429 cites W70082989 @default.
- W3138361429 doi "https://doi.org/10.1101/2021.03.17.435848" @default.
- W3138361429 hasPublicationYear "2021" @default.
- W3138361429 type Work @default.
- W3138361429 sameAs 3138361429 @default.
- W3138361429 citedByCount "1" @default.
- W3138361429 countsByYear W31383614292023 @default.
- W3138361429 crossrefType "posted-content" @default.
- W3138361429 hasAuthorship W3138361429A5026554824 @default.
- W3138361429 hasAuthorship W3138361429A5027093666 @default.