Matches in SemOpenAlex for { <https://semopenalex.org/work/W3138365065> ?p ?o ?g. }
- W3138365065 endingPage "085010" @default.
- W3138365065 startingPage "085010" @default.
- W3138365065 abstract "Abstract A synthetic computed tomography (sCT) is required for daily plan optimization on an MRI-linac. Yet, only limited information is available on the accuracy of dose calculations on sCT for breast radiotherapy. This work aimed to (1) evaluate dosimetric accuracy of treatment plans for single-fraction neoadjuvant partial breast irradiation (PBI) on a 1.5 T MRI-linac calculated on a) bulk-density sCT mimicking the current MRI-linac workflow and b) deep learning-generated sCT, and (2) investigate the number of bulk-density levels required. For ten breast cancer patients we created three bulk-density sCTs of increasing complexity from the planning-CT, using bulk-density for: (1) body, lungs, and GTV (sCT BD1 ); (2) volumes for sCT BD1 plus chest wall and ipsilateral breast (sCT BD2 ); (3) volumes for sCT BD2 plus ribs (sCT BD3 ); and a deep learning-generated sCT (sCT DL ) from a 1.5 T MRI in supine position. Single-fraction neoadjuvant PBI treatment plans for a 1.5 T MRI-linac were optimized on each sCT and recalculated on the planning-CT. Image evaluation was performed by assessing mean absolute error (MAE) and mean error (ME) in Hounsfield Units (HU) between the sCTs and the planning-CT. Dosimetric evaluation was performed by assessing dose differences, gamma pass rates, and dose-volume histogram (DVH) differences. The following results were obtained (median across patients for sCT BD1 /sCT BD2 /sCT BD3 /sCT DL respectively): MAE inside the body contour was 106/104/104/75 HU and ME was 8/9/6/28 HU, mean dose difference in the PTV GTV was 0.15/0.00/0.00/−0.07 Gy, median gamma pass rate (2%/2 mm, 10% dose threshold) was 98.9/98.9/98.7/99.4%, and differences in DVH parameters were well below 2% for all structures except for the skin in the sCT DL . Accurate dose calculations for single-fraction neoadjuvant PBI on an MRI-linac could be performed on both bulk-density and deep learning sCT, facilitating further implementation of MRI-guided radiotherapy for breast cancer. Balancing simplicity and accuracy, sCT BD2 showed the optimal number of bulk-density levels for a bulk-density approach." @default.
- W3138365065 created "2021-03-29" @default.
- W3138365065 creator A5015345825 @default.
- W3138365065 creator A5031255001 @default.
- W3138365065 creator A5032306589 @default.
- W3138365065 creator A5037732583 @default.
- W3138365065 creator A5037915733 @default.
- W3138365065 creator A5043354234 @default.
- W3138365065 creator A5043918952 @default.
- W3138365065 creator A5049564590 @default.
- W3138365065 creator A5072417836 @default.
- W3138365065 creator A5091207914 @default.
- W3138365065 creator A5091311820 @default.
- W3138365065 creator A5091390590 @default.
- W3138365065 date "2021-04-16" @default.
- W3138365065 modified "2023-10-05" @default.
- W3138365065 title "Synthetic CT for single-fraction neoadjuvant partial breast irradiation on an MRI-linac" @default.
- W3138365065 cites W1274934302 @default.
- W3138365065 cites W1967121735 @default.
- W3138365065 cites W1987079459 @default.
- W3138365065 cites W2040876462 @default.
- W3138365065 cites W2044428967 @default.
- W3138365065 cites W2065992941 @default.
- W3138365065 cites W2080056320 @default.
- W3138365065 cites W2083825568 @default.
- W3138365065 cites W2096305085 @default.
- W3138365065 cites W2122199930 @default.
- W3138365065 cites W2128124359 @default.
- W3138365065 cites W2133287637 @default.
- W3138365065 cites W2133665775 @default.
- W3138365065 cites W2488050886 @default.
- W3138365065 cites W2519353639 @default.
- W3138365065 cites W2522256503 @default.
- W3138365065 cites W2574268458 @default.
- W3138365065 cites W2580163862 @default.
- W3138365065 cites W2592150536 @default.
- W3138365065 cites W2604802653 @default.
- W3138365065 cites W2630100750 @default.
- W3138365065 cites W2739527645 @default.
- W3138365065 cites W2754715013 @default.
- W3138365065 cites W2766643709 @default.
- W3138365065 cites W2771678676 @default.
- W3138365065 cites W2788639475 @default.
- W3138365065 cites W2805992239 @default.
- W3138365065 cites W2885710204 @default.
- W3138365065 cites W2890909732 @default.
- W3138365065 cites W2892058085 @default.
- W3138365065 cites W2898871261 @default.
- W3138365065 cites W2904832356 @default.
- W3138365065 cites W2914306630 @default.
- W3138365065 cites W2921152759 @default.
- W3138365065 cites W2930910485 @default.
- W3138365065 cites W2935787471 @default.
- W3138365065 cites W2957014213 @default.
- W3138365065 cites W2962793481 @default.
- W3138365065 cites W2969676068 @default.
- W3138365065 cites W2976745382 @default.
- W3138365065 cites W2979318050 @default.
- W3138365065 cites W2991896238 @default.
- W3138365065 cites W2996566216 @default.
- W3138365065 cites W2996726934 @default.
- W3138365065 cites W2998025092 @default.
- W3138365065 cites W2999048187 @default.
- W3138365065 cites W3025646610 @default.
- W3138365065 cites W3045528856 @default.
- W3138365065 cites W3071020744 @default.
- W3138365065 cites W3088358581 @default.
- W3138365065 cites W3100375838 @default.
- W3138365065 cites W3102986501 @default.
- W3138365065 cites W4292318935 @default.
- W3138365065 doi "https://doi.org/10.1088/1361-6560/abf1ba" @default.
- W3138365065 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33761491" @default.
- W3138365065 hasPublicationYear "2021" @default.
- W3138365065 type Work @default.
- W3138365065 sameAs 3138365065 @default.
- W3138365065 citedByCount "10" @default.
- W3138365065 countsByYear W31383650652021 @default.
- W3138365065 countsByYear W31383650652022 @default.
- W3138365065 countsByYear W31383650652023 @default.
- W3138365065 crossrefType "journal-article" @default.
- W3138365065 hasAuthorship W3138365065A5015345825 @default.
- W3138365065 hasAuthorship W3138365065A5031255001 @default.
- W3138365065 hasAuthorship W3138365065A5032306589 @default.
- W3138365065 hasAuthorship W3138365065A5037732583 @default.
- W3138365065 hasAuthorship W3138365065A5037915733 @default.
- W3138365065 hasAuthorship W3138365065A5043354234 @default.
- W3138365065 hasAuthorship W3138365065A5043918952 @default.
- W3138365065 hasAuthorship W3138365065A5049564590 @default.
- W3138365065 hasAuthorship W3138365065A5072417836 @default.
- W3138365065 hasAuthorship W3138365065A5091207914 @default.
- W3138365065 hasAuthorship W3138365065A5091311820 @default.
- W3138365065 hasAuthorship W3138365065A5091390590 @default.
- W3138365065 hasConcept C121608353 @default.
- W3138365065 hasConcept C125567185 @default.
- W3138365065 hasConcept C126322002 @default.
- W3138365065 hasConcept C126838900 @default.
- W3138365065 hasConcept C141071460 @default.
- W3138365065 hasConcept C143409427 @default.