Matches in SemOpenAlex for { <https://semopenalex.org/work/W3138395440> ?p ?o ?g. }
Showing items 1 to 57 of
57
with 100 items per page.
- W3138395440 endingPage "15" @default.
- W3138395440 startingPage "1" @default.
- W3138395440 abstract "In this paper (PART II), we present output waveforms and the corresponding spectrum of a periodic Nyquist pulse train with a roll-off factor α emitted from a mode-locked Nyquist laser. In the first part, the relationship between the optical filter amplitudes H <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>a</sub> and H <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>b</sub> installed in a Nyquist laser cavity is derived by using the inverse Fourier transformation of filter F <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>1</sub> ( ω) at a low frequency edge and F <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2</sub> ( ω) at a high frequency edge. We found that the relationship H <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>b</sub> = (4/3) H <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>a</sub> for α = 0 is changed into the relationship H <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>b</sub> = (1/cos( β Ω <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>m</sub> /2)) H <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>a</sub> for α ≠ 0, where β = π/( 2αω <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>N</sub> ), ω <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>N</sub> is the zero-crossing frequency and Ω <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>m</sub> is the modulation frequency. This relationship is important for describing the entire spectral profile of the optical filter installed in the laser cavity. In the latter part, we report how we succeeded in generating a Nyquist pulse train with an arbitrary α value by employing computer simulations with analytically derived optical filters consisting of F <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>1</sub> ( ω) and F <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2</sub> ( ω), H <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>a</sub> , and H <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>b</sub> . We found that a Nyquist laser cannot always generate an isolated ideal Nyquist pulse train because there is interference between the wings of adjacent Nyquist pulses. We clarify the differences and similarities as regards filter shape and the corresponding waveform in the time domain of a single Nyquist pulse and a periodic Nyquist pulse train in terms of differences in power P, time-domain distribution τ, spectrum S, and filter shape F. We show that a pure Nyquist pulse train can be obtained with the condition α N > 10, where differences in P, S, and F are less than 1 %, and we present a useful chart showing how to generate a Nyquist pulse train in the GHz region. N is the number of modes in the low or high frequency region. We investigated the time domain orthogonality g <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>m,n</sub> of the Nyquist pulse train from the laser and found that the orthogonality can be maintained although there is a small interference effect on the wing of the Nyquist pulse." @default.
- W3138395440 created "2021-03-29" @default.
- W3138395440 creator A5006690054 @default.
- W3138395440 creator A5078188464 @default.
- W3138395440 date "2021-06-01" @default.
- W3138395440 modified "2023-09-24" @default.
- W3138395440 title "A Generalized Mode-Locking Theory for a Nyquist Laser With an Arbitrary Roll-Off Factor PART II: Oscillation Waveforms and Spectral Characteristics" @default.
- W3138395440 cites W2018081776 @default.
- W3138395440 cites W2021314842 @default.
- W3138395440 cites W2040416764 @default.
- W3138395440 cites W2042998181 @default.
- W3138395440 cites W2058890034 @default.
- W3138395440 cites W2171211801 @default.
- W3138395440 cites W2290875135 @default.
- W3138395440 cites W2462197534 @default.
- W3138395440 cites W2905640833 @default.
- W3138395440 doi "https://doi.org/10.1109/jqe.2021.3065935" @default.
- W3138395440 hasPublicationYear "2021" @default.
- W3138395440 type Work @default.
- W3138395440 sameAs 3138395440 @default.
- W3138395440 citedByCount "3" @default.
- W3138395440 countsByYear W31383954402022 @default.
- W3138395440 crossrefType "journal-article" @default.
- W3138395440 hasAuthorship W3138395440A5006690054 @default.
- W3138395440 hasAuthorship W3138395440A5078188464 @default.
- W3138395440 hasConcept C11413529 @default.
- W3138395440 hasConcept C121332964 @default.
- W3138395440 hasConcept C288623 @default.
- W3138395440 hasConcept C31972630 @default.
- W3138395440 hasConcept C41008148 @default.
- W3138395440 hasConceptScore W3138395440C11413529 @default.
- W3138395440 hasConceptScore W3138395440C121332964 @default.
- W3138395440 hasConceptScore W3138395440C288623 @default.
- W3138395440 hasConceptScore W3138395440C31972630 @default.
- W3138395440 hasConceptScore W3138395440C41008148 @default.
- W3138395440 hasFunder F4320334764 @default.
- W3138395440 hasIssue "3" @default.
- W3138395440 hasLocation W31383954401 @default.
- W3138395440 hasOpenAccess W3138395440 @default.
- W3138395440 hasPrimaryLocation W31383954401 @default.
- W3138395440 hasRelatedWork W10455815 @default.
- W3138395440 hasRelatedWork W1082220 @default.
- W3138395440 hasRelatedWork W13051760 @default.
- W3138395440 hasRelatedWork W20163626 @default.
- W3138395440 hasRelatedWork W29214413 @default.
- W3138395440 hasRelatedWork W36171694 @default.
- W3138395440 hasRelatedWork W43504090 @default.
- W3138395440 hasRelatedWork W4703295 @default.
- W3138395440 hasRelatedWork W5316957 @default.
- W3138395440 hasRelatedWork W7662212 @default.
- W3138395440 hasVolume "57" @default.
- W3138395440 isParatext "false" @default.
- W3138395440 isRetracted "false" @default.
- W3138395440 magId "3138395440" @default.
- W3138395440 workType "article" @default.