Matches in SemOpenAlex for { <https://semopenalex.org/work/W3138445260> ?p ?o ?g. }
- W3138445260 endingPage "4923" @default.
- W3138445260 startingPage "4903" @default.
- W3138445260 abstract "In this article, a novel combined i-vector and an Extreme Learning Machine (ELM) is proposed for speaker identification. The ELM is chosen because it is fast to train and has a universal approximator property. Four combinations of features based on Mel Frequency Cepstral Coefficient and Power Normalized Cepstral Coefficient are used. Besides, seven fusion methods are exploited. The system is evaluated with three different databases, namely: the SITW 2006, NIST 2008, and the TIMIT database. This work employs the 2016 SITW database for the first time for speaker identification using the integration between the ELM and i-vector approach. From each database, 120 speakers with 1200 speech utterances are used (overall 360 speakers with 3600 speech utterances). Furthermore, comprehensive evaluations are exploited with a wide range of realistic background noise types (Stationary noise AWGN and Non-Stationary Noise types) with the handset effect. The proposed system is compared with the Gaussian Mixture Model-Universal Background Model (GMM-UBM) and other states of the art approaches. The results show that the i-vector method outperforms the GMM-UBM approach and other state- of-the-art methods under specific conditions, and that fusion techniques can be used to improve robustness to noise and handset effects." @default.
- W3138445260 created "2021-03-29" @default.
- W3138445260 creator A5036319485 @default.
- W3138445260 creator A5053424993 @default.
- W3138445260 creator A5084431277 @default.
- W3138445260 creator A5085278741 @default.
- W3138445260 date "2021-03-25" @default.
- W3138445260 modified "2023-10-18" @default.
- W3138445260 title "Combined i-Vector and Extreme Learning Machine Approach for Robust Speaker Identification and Evaluation with SITW 2016, NIST 2008, TIMIT Databases" @default.
- W3138445260 cites W1163572983 @default.
- W3138445260 cites W1995676917 @default.
- W3138445260 cites W1999651846 @default.
- W3138445260 cites W2000447741 @default.
- W3138445260 cites W2028261224 @default.
- W3138445260 cites W2034801638 @default.
- W3138445260 cites W2040202932 @default.
- W3138445260 cites W2048014685 @default.
- W3138445260 cites W2080794664 @default.
- W3138445260 cites W2121061347 @default.
- W3138445260 cites W2143944641 @default.
- W3138445260 cites W2150769028 @default.
- W3138445260 cites W2165880886 @default.
- W3138445260 cites W2283724112 @default.
- W3138445260 cites W2317354861 @default.
- W3138445260 cites W2334935959 @default.
- W3138445260 cites W2408701322 @default.
- W3138445260 cites W2465929418 @default.
- W3138445260 cites W2508015696 @default.
- W3138445260 cites W2511728792 @default.
- W3138445260 cites W2513087016 @default.
- W3138445260 cites W2576505706 @default.
- W3138445260 cites W2596280359 @default.
- W3138445260 cites W2611566996 @default.
- W3138445260 cites W2618430901 @default.
- W3138445260 cites W2747005997 @default.
- W3138445260 cites W2765952435 @default.
- W3138445260 cites W2766051723 @default.
- W3138445260 cites W2774352029 @default.
- W3138445260 cites W2793636799 @default.
- W3138445260 cites W2888392356 @default.
- W3138445260 cites W2898163408 @default.
- W3138445260 cites W2901334240 @default.
- W3138445260 cites W2911381394 @default.
- W3138445260 cites W2913845656 @default.
- W3138445260 cites W2915993123 @default.
- W3138445260 cites W2942827220 @default.
- W3138445260 cites W2966889353 @default.
- W3138445260 cites W2994602700 @default.
- W3138445260 cites W3036598372 @default.
- W3138445260 cites W32979931 @default.
- W3138445260 cites W4233464001 @default.
- W3138445260 doi "https://doi.org/10.1007/s00034-021-01697-7" @default.
- W3138445260 hasPublicationYear "2021" @default.
- W3138445260 type Work @default.
- W3138445260 sameAs 3138445260 @default.
- W3138445260 citedByCount "8" @default.
- W3138445260 countsByYear W31384452602021 @default.
- W3138445260 countsByYear W31384452602022 @default.
- W3138445260 countsByYear W31384452602023 @default.
- W3138445260 crossrefType "journal-article" @default.
- W3138445260 hasAuthorship W3138445260A5036319485 @default.
- W3138445260 hasAuthorship W3138445260A5053424993 @default.
- W3138445260 hasAuthorship W3138445260A5084431277 @default.
- W3138445260 hasAuthorship W3138445260A5085278741 @default.
- W3138445260 hasBestOaLocation W31384452602 @default.
- W3138445260 hasConcept C104317684 @default.
- W3138445260 hasConcept C111219384 @default.
- W3138445260 hasConcept C115961682 @default.
- W3138445260 hasConcept C12267149 @default.
- W3138445260 hasConcept C133892786 @default.
- W3138445260 hasConcept C151989614 @default.
- W3138445260 hasConcept C153180895 @default.
- W3138445260 hasConcept C154945302 @default.
- W3138445260 hasConcept C185592680 @default.
- W3138445260 hasConcept C23224414 @default.
- W3138445260 hasConcept C2778724510 @default.
- W3138445260 hasConcept C28490314 @default.
- W3138445260 hasConcept C41008148 @default.
- W3138445260 hasConcept C52622490 @default.
- W3138445260 hasConcept C55493867 @default.
- W3138445260 hasConcept C63479239 @default.
- W3138445260 hasConcept C88485024 @default.
- W3138445260 hasConcept C99498987 @default.
- W3138445260 hasConceptScore W3138445260C104317684 @default.
- W3138445260 hasConceptScore W3138445260C111219384 @default.
- W3138445260 hasConceptScore W3138445260C115961682 @default.
- W3138445260 hasConceptScore W3138445260C12267149 @default.
- W3138445260 hasConceptScore W3138445260C133892786 @default.
- W3138445260 hasConceptScore W3138445260C151989614 @default.
- W3138445260 hasConceptScore W3138445260C153180895 @default.
- W3138445260 hasConceptScore W3138445260C154945302 @default.
- W3138445260 hasConceptScore W3138445260C185592680 @default.
- W3138445260 hasConceptScore W3138445260C23224414 @default.
- W3138445260 hasConceptScore W3138445260C2778724510 @default.
- W3138445260 hasConceptScore W3138445260C28490314 @default.
- W3138445260 hasConceptScore W3138445260C41008148 @default.
- W3138445260 hasConceptScore W3138445260C52622490 @default.
- W3138445260 hasConceptScore W3138445260C55493867 @default.