Matches in SemOpenAlex for { <https://semopenalex.org/work/W3138450274> ?p ?o ?g. }
- W3138450274 endingPage "111333" @default.
- W3138450274 startingPage "111333" @default.
- W3138450274 abstract "The geographic origin and variety of wine grapes play a vital role in shaping wine characteristics. To determine the geographic origins and varieties of wine grapes, the compositions of the microbial communities on the surface of four varietal grapes from five regions in Xinjiang, China were investigated using high-throughput sequencing. Furthermore, a random forest (RF) classifier was introduced to distinguish the geographic origins and varieties of the wine grapes. The results show that the construction of the microbial communities on the surfaces of the wine grapes is driven more by the geographic origin than the variety. The fungal RF classifier shows better accuracy than the bacterial RF classifier in determining the geographic origins and varieties of wine grapes. The fungal RF classifier exhibits a strong ability to authenticate the geographic origins of Cabernet Sauvignon based on the composition of fungi on the surface of the grapes with an accuracy of 93.33%. The RF classifier exhibits the highest accuracy (66.67%) in distinguishing the wine grape varieties. Thus, this study confirmed the potential of the HTS technique coupled with the random forest algorithm for identifying the geographic origin and variety of wine grapes." @default.
- W3138450274 created "2021-03-29" @default.
- W3138450274 creator A5024584263 @default.
- W3138450274 creator A5030226818 @default.
- W3138450274 creator A5035681773 @default.
- W3138450274 creator A5050402661 @default.
- W3138450274 creator A5066599847 @default.
- W3138450274 creator A5075723798 @default.
- W3138450274 creator A5078103268 @default.
- W3138450274 creator A5079841415 @default.
- W3138450274 creator A5082283732 @default.
- W3138450274 date "2021-06-01" @default.
- W3138450274 modified "2023-10-18" @default.
- W3138450274 title "Discrimination of the geographic origins and varieties of wine grapes using high-throughput sequencing assisted by a random forest model" @default.
- W3138450274 cites W1909317275 @default.
- W3138450274 cites W1965812343 @default.
- W3138450274 cites W1993002863 @default.
- W3138450274 cites W2010781538 @default.
- W3138450274 cites W2011189099 @default.
- W3138450274 cites W2043516398 @default.
- W3138450274 cites W2045208814 @default.
- W3138450274 cites W2093027685 @default.
- W3138450274 cites W2094545190 @default.
- W3138450274 cites W2119411037 @default.
- W3138450274 cites W2257613650 @default.
- W3138450274 cites W2317082793 @default.
- W3138450274 cites W2318194887 @default.
- W3138450274 cites W2345430229 @default.
- W3138450274 cites W2346857046 @default.
- W3138450274 cites W2581743037 @default.
- W3138450274 cites W2585881105 @default.
- W3138450274 cites W2609406042 @default.
- W3138450274 cites W2754319626 @default.
- W3138450274 cites W2754510221 @default.
- W3138450274 cites W2775100420 @default.
- W3138450274 cites W2790418340 @default.
- W3138450274 cites W2791194309 @default.
- W3138450274 cites W2791871403 @default.
- W3138450274 cites W2800762554 @default.
- W3138450274 cites W2805779334 @default.
- W3138450274 cites W2883401808 @default.
- W3138450274 cites W2884259274 @default.
- W3138450274 cites W2912036580 @default.
- W3138450274 cites W2921610882 @default.
- W3138450274 cites W2939732478 @default.
- W3138450274 cites W2941416737 @default.
- W3138450274 cites W2969853509 @default.
- W3138450274 cites W2979212711 @default.
- W3138450274 cites W2989580273 @default.
- W3138450274 cites W2991613763 @default.
- W3138450274 cites W2992314251 @default.
- W3138450274 cites W2993071467 @default.
- W3138450274 cites W2994716282 @default.
- W3138450274 cites W2996862165 @default.
- W3138450274 cites W2997427411 @default.
- W3138450274 cites W2998250266 @default.
- W3138450274 cites W3005141663 @default.
- W3138450274 cites W3016991262 @default.
- W3138450274 cites W3030709231 @default.
- W3138450274 cites W3041719868 @default.
- W3138450274 cites W3043135777 @default.
- W3138450274 cites W3047556776 @default.
- W3138450274 cites W3082081902 @default.
- W3138450274 cites W3092981752 @default.
- W3138450274 cites W3109519002 @default.
- W3138450274 cites W3125779498 @default.
- W3138450274 doi "https://doi.org/10.1016/j.lwt.2021.111333" @default.
- W3138450274 hasPublicationYear "2021" @default.
- W3138450274 type Work @default.
- W3138450274 sameAs 3138450274 @default.
- W3138450274 citedByCount "10" @default.
- W3138450274 countsByYear W31384502742021 @default.
- W3138450274 countsByYear W31384502742022 @default.
- W3138450274 countsByYear W31384502742023 @default.
- W3138450274 crossrefType "journal-article" @default.
- W3138450274 hasAuthorship W3138450274A5024584263 @default.
- W3138450274 hasAuthorship W3138450274A5030226818 @default.
- W3138450274 hasAuthorship W3138450274A5035681773 @default.
- W3138450274 hasAuthorship W3138450274A5050402661 @default.
- W3138450274 hasAuthorship W3138450274A5066599847 @default.
- W3138450274 hasAuthorship W3138450274A5075723798 @default.
- W3138450274 hasAuthorship W3138450274A5078103268 @default.
- W3138450274 hasAuthorship W3138450274A5079841415 @default.
- W3138450274 hasAuthorship W3138450274A5082283732 @default.
- W3138450274 hasConcept C148383697 @default.
- W3138450274 hasConcept C154945302 @default.
- W3138450274 hasConcept C169258074 @default.
- W3138450274 hasConcept C205649164 @default.
- W3138450274 hasConcept C2994231213 @default.
- W3138450274 hasConcept C2994243853 @default.
- W3138450274 hasConcept C31903555 @default.
- W3138450274 hasConcept C41008148 @default.
- W3138450274 hasConcept C55952523 @default.
- W3138450274 hasConcept C86803240 @default.
- W3138450274 hasConcept C95623464 @default.
- W3138450274 hasConceptScore W3138450274C148383697 @default.
- W3138450274 hasConceptScore W3138450274C154945302 @default.
- W3138450274 hasConceptScore W3138450274C169258074 @default.