Matches in SemOpenAlex for { <https://semopenalex.org/work/W3138520144> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W3138520144 endingPage "355" @default.
- W3138520144 startingPage "341" @default.
- W3138520144 abstract "<p indent=0mm>Predictive maintenance (PM) is a potential outburst point in intelligent manufacturing. As the key issue of PM in recent years, artificial intelligence (AI) diagnosis has become a research focus in engineering research and developed a series of diagnostic methods with great application prospect. Complete faulty samples are essential to activate AI models. However, in engineering applications, faults are considerably more than the fault samples obtained in advance from real-world running mechanical systems. Therefore, a numerical simulation driving generative adversarial networks (GANs) is proposed to obtain relatively complete fault samples for building a bridge between AI models and real-world running mechanical systems and to present the new-type principle for AI diagnosis. First, the finite element method is employed to simulate missing fault samples of mechanical systems, which are combined with the fault samples obtained in advance to construct relatively complete fault samples. Then, a large number of new samples similar to the relatively complete fault samples are generated using GANs to improve the quality of fault samples. The new samples are further combined with the relatively complete fault samples to obtain complete fault samples (synthetic fault samples). The complete fault samples are employed as training samples of AI models, and the test samples of unknown faults are finally classified. The fault diagnostic performances are compared with the commonly used AI diagnostic models by using the public datasets of faulty bearings, the faulty gear test rig, and the faulty rotor test rig as examples. The effectiveness of the proposed AI diagnostic principle is verified and it brings the new hope to extend AI diagnostic models to detect faults in real-world running mechanical systems." @default.
- W3138520144 created "2021-03-29" @default.
- W3138520144 creator A5091324827 @default.
- W3138520144 date "2020-10-20" @default.
- W3138520144 modified "2023-10-17" @default.
- W3138520144 title "Numerical simulation driving generative adversarial networks in association with the artificial intelligence diagnostic principle to detect mechanical faults" @default.
- W3138520144 doi "https://doi.org/10.1360/sst-2020-0182" @default.
- W3138520144 hasPublicationYear "2020" @default.
- W3138520144 type Work @default.
- W3138520144 sameAs 3138520144 @default.
- W3138520144 citedByCount "8" @default.
- W3138520144 countsByYear W31385201442021 @default.
- W3138520144 countsByYear W31385201442022 @default.
- W3138520144 countsByYear W31385201442023 @default.
- W3138520144 crossrefType "journal-article" @default.
- W3138520144 hasAuthorship W3138520144A5091324827 @default.
- W3138520144 hasBestOaLocation W31385201441 @default.
- W3138520144 hasConcept C11413529 @default.
- W3138520144 hasConcept C119599485 @default.
- W3138520144 hasConcept C119857082 @default.
- W3138520144 hasConcept C126953365 @default.
- W3138520144 hasConcept C127313418 @default.
- W3138520144 hasConcept C127413603 @default.
- W3138520144 hasConcept C134146338 @default.
- W3138520144 hasConcept C152745839 @default.
- W3138520144 hasConcept C154945302 @default.
- W3138520144 hasConcept C165205528 @default.
- W3138520144 hasConcept C167391956 @default.
- W3138520144 hasConcept C172707124 @default.
- W3138520144 hasConcept C175551986 @default.
- W3138520144 hasConcept C200601418 @default.
- W3138520144 hasConcept C37736160 @default.
- W3138520144 hasConcept C39890363 @default.
- W3138520144 hasConcept C41008148 @default.
- W3138520144 hasConceptScore W3138520144C11413529 @default.
- W3138520144 hasConceptScore W3138520144C119599485 @default.
- W3138520144 hasConceptScore W3138520144C119857082 @default.
- W3138520144 hasConceptScore W3138520144C126953365 @default.
- W3138520144 hasConceptScore W3138520144C127313418 @default.
- W3138520144 hasConceptScore W3138520144C127413603 @default.
- W3138520144 hasConceptScore W3138520144C134146338 @default.
- W3138520144 hasConceptScore W3138520144C152745839 @default.
- W3138520144 hasConceptScore W3138520144C154945302 @default.
- W3138520144 hasConceptScore W3138520144C165205528 @default.
- W3138520144 hasConceptScore W3138520144C167391956 @default.
- W3138520144 hasConceptScore W3138520144C172707124 @default.
- W3138520144 hasConceptScore W3138520144C175551986 @default.
- W3138520144 hasConceptScore W3138520144C200601418 @default.
- W3138520144 hasConceptScore W3138520144C37736160 @default.
- W3138520144 hasConceptScore W3138520144C39890363 @default.
- W3138520144 hasConceptScore W3138520144C41008148 @default.
- W3138520144 hasIssue "3" @default.
- W3138520144 hasLocation W31385201441 @default.
- W3138520144 hasOpenAccess W3138520144 @default.
- W3138520144 hasPrimaryLocation W31385201441 @default.
- W3138520144 hasRelatedWork W1647641933 @default.
- W3138520144 hasRelatedWork W1974225921 @default.
- W3138520144 hasRelatedWork W2006879382 @default.
- W3138520144 hasRelatedWork W2024194466 @default.
- W3138520144 hasRelatedWork W2150780157 @default.
- W3138520144 hasRelatedWork W2182686888 @default.
- W3138520144 hasRelatedWork W2353845935 @default.
- W3138520144 hasRelatedWork W3148663848 @default.
- W3138520144 hasRelatedWork W4210447066 @default.
- W3138520144 hasRelatedWork W3140743395 @default.
- W3138520144 hasVolume "51" @default.
- W3138520144 isParatext "false" @default.
- W3138520144 isRetracted "false" @default.
- W3138520144 magId "3138520144" @default.
- W3138520144 workType "article" @default.