Matches in SemOpenAlex for { <https://semopenalex.org/work/W3138585605> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W3138585605 abstract "Histopathology serves as the gold standard in the process of cancer diagnosis and unravelling the disease heterogeneity. In routine practice, a trained histopathologist performs visual examination of tissue glass slides under the microscope. The objective of the visual examination is to observe the morphological appearance of tissue sections, analyse the density of tumour rich areas, spatial arrangement, and architecture of diferent types of cells. However, careful visual examination of tissue slides is a demanding task especially when workloads are high, and the subjective nature of the histological grading inevitably leads to inter- and even intra-observer variability. Attaining high accuracy and objective quantification of tissue specimens in cancer diagnosis are some of the ongoing challenges in modern histopathology. With the recent advent of digital pathology, tissue glass slides can now be scanned with digital slides scanners to produce whole slide images (WSIs). A WSI contains a high-resolution pixel representation of tissue slide, stored in a pyramidal structure and typically containing 1010 pixels. Automated algorithms are generally based on the concepts of digital image analysis which can analyse WSIs to improve the precision and reproducibility in cancer diagnostics. The reliability of the results of an algorithm can be objectively measured and improved against an objective standard.In this thesis, we focus on developing automated methods for quantitative assessment of histology WSIs with the aim of improving the precision and reproducibility of cancer diagnosis. More specifically, the designed automated computational pathology algorithms are based on deep learning models in conjunction with algebraic topology and visual attention mechanisms. To the best of our knowledge, the applicability of attention and topology based methods have not been explored in the domain of computational pathology. In this regard, we propose an algorithm for computing persistent homology profiles (topological features) and propose two variants for effective and reliable tumour segmentation of colorectal cancer WSIs. We show that incorporation of deep features along with topological features improves the overall performance for tumour segmentation. We then present the first-ever systematic study (contest) for scoring the human epidermal growth factor receptor 2 (HER2) biomarker on breast cancer histology WSIs. Further, we devise a reinforcement learning based attention mechanism for HER2 scoring that sequentially identifies and analyses the diagnostically relevant regions within a given image, mimicking the histopathologist who would not usually analyse every part of the slide at the highest magnification. We demonstrate the proposed model outperforms other methods participated in our systematic study, most of them were using state-of-the-art deep convolutional networks. Finally, we propose a multi-task learning framework for simultaneous cell detection and classifi- cation, which we named as Hydra-Net. We then compute an image based biomarker which we refer as digital proximity signature (DPS), to predict overall survival in diffuse large B-cell lymphoma (DLBCL) patients. Our results suggest that patients with high collagen-tumour proximity are likely to experience better overall survival." @default.
- W3138585605 created "2021-03-29" @default.
- W3138585605 creator A5089967045 @default.
- W3138585605 date "2019-04-01" @default.
- W3138585605 modified "2023-09-23" @default.
- W3138585605 title "Topology and attention in computational pathology" @default.
- W3138585605 hasPublicationYear "2019" @default.
- W3138585605 type Work @default.
- W3138585605 sameAs 3138585605 @default.
- W3138585605 citedByCount "0" @default.
- W3138585605 crossrefType "dissertation" @default.
- W3138585605 hasAuthorship W3138585605A5089967045 @default.
- W3138585605 hasConcept C105795698 @default.
- W3138585605 hasConcept C120665830 @default.
- W3138585605 hasConcept C121332964 @default.
- W3138585605 hasConcept C142724271 @default.
- W3138585605 hasConcept C153180895 @default.
- W3138585605 hasConcept C154945302 @default.
- W3138585605 hasConcept C160633673 @default.
- W3138585605 hasConcept C160735492 @default.
- W3138585605 hasConcept C162324750 @default.
- W3138585605 hasConcept C18903297 @default.
- W3138585605 hasConcept C192209626 @default.
- W3138585605 hasConcept C2777286243 @default.
- W3138585605 hasConcept C2777522853 @default.
- W3138585605 hasConcept C2779891985 @default.
- W3138585605 hasConcept C2780029942 @default.
- W3138585605 hasConcept C31972630 @default.
- W3138585605 hasConcept C33923547 @default.
- W3138585605 hasConcept C36464697 @default.
- W3138585605 hasConcept C41008148 @default.
- W3138585605 hasConcept C50522688 @default.
- W3138585605 hasConcept C71924100 @default.
- W3138585605 hasConcept C86803240 @default.
- W3138585605 hasConcept C91803115 @default.
- W3138585605 hasConcept C9893847 @default.
- W3138585605 hasConceptScore W3138585605C105795698 @default.
- W3138585605 hasConceptScore W3138585605C120665830 @default.
- W3138585605 hasConceptScore W3138585605C121332964 @default.
- W3138585605 hasConceptScore W3138585605C142724271 @default.
- W3138585605 hasConceptScore W3138585605C153180895 @default.
- W3138585605 hasConceptScore W3138585605C154945302 @default.
- W3138585605 hasConceptScore W3138585605C160633673 @default.
- W3138585605 hasConceptScore W3138585605C160735492 @default.
- W3138585605 hasConceptScore W3138585605C162324750 @default.
- W3138585605 hasConceptScore W3138585605C18903297 @default.
- W3138585605 hasConceptScore W3138585605C192209626 @default.
- W3138585605 hasConceptScore W3138585605C2777286243 @default.
- W3138585605 hasConceptScore W3138585605C2777522853 @default.
- W3138585605 hasConceptScore W3138585605C2779891985 @default.
- W3138585605 hasConceptScore W3138585605C2780029942 @default.
- W3138585605 hasConceptScore W3138585605C31972630 @default.
- W3138585605 hasConceptScore W3138585605C33923547 @default.
- W3138585605 hasConceptScore W3138585605C36464697 @default.
- W3138585605 hasConceptScore W3138585605C41008148 @default.
- W3138585605 hasConceptScore W3138585605C50522688 @default.
- W3138585605 hasConceptScore W3138585605C71924100 @default.
- W3138585605 hasConceptScore W3138585605C86803240 @default.
- W3138585605 hasConceptScore W3138585605C91803115 @default.
- W3138585605 hasConceptScore W3138585605C9893847 @default.
- W3138585605 hasLocation W31385856051 @default.
- W3138585605 hasOpenAccess W3138585605 @default.
- W3138585605 hasPrimaryLocation W31385856051 @default.
- W3138585605 hasRelatedWork W1975999319 @default.
- W3138585605 hasRelatedWork W2062177968 @default.
- W3138585605 hasRelatedWork W2200290088 @default.
- W3138585605 hasRelatedWork W2609584387 @default.
- W3138585605 hasRelatedWork W2890554424 @default.
- W3138585605 hasRelatedWork W2899173431 @default.
- W3138585605 hasRelatedWork W2944600676 @default.
- W3138585605 hasRelatedWork W2948885921 @default.
- W3138585605 hasRelatedWork W2998472909 @default.
- W3138585605 hasRelatedWork W3008837427 @default.
- W3138585605 hasRelatedWork W3014480661 @default.
- W3138585605 hasRelatedWork W3025979743 @default.
- W3138585605 hasRelatedWork W3027504626 @default.
- W3138585605 hasRelatedWork W3040301339 @default.
- W3138585605 hasRelatedWork W3048101421 @default.
- W3138585605 hasRelatedWork W3113168049 @default.
- W3138585605 hasRelatedWork W3121859091 @default.
- W3138585605 hasRelatedWork W3130835959 @default.
- W3138585605 hasRelatedWork W3165730810 @default.
- W3138585605 hasRelatedWork W3192527600 @default.
- W3138585605 isParatext "false" @default.
- W3138585605 isRetracted "false" @default.
- W3138585605 magId "3138585605" @default.
- W3138585605 workType "dissertation" @default.