Matches in SemOpenAlex for { <https://semopenalex.org/work/W3138589915> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W3138589915 endingPage "1705" @default.
- W3138589915 startingPage "1621" @default.
- W3138589915 abstract "Abstract Here $${underline{M}}$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:munder> <mml:mi>M</mml:mi> <mml:mo>̲</mml:mo> </mml:munder> </mml:math> denotes a pair ( M , A ) of a manifold and a subset (e.g. $$A=partial M$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:mi>A</mml:mi> <mml:mo>=</mml:mo> <mml:mi>∂</mml:mi> <mml:mi>M</mml:mi> </mml:mrow> </mml:math> or $$A=varnothing $$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:mi>A</mml:mi> <mml:mo>=</mml:mo> <mml:mi>∅</mml:mi> </mml:mrow> </mml:math> ). We construct for each $${underline{M}}$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:munder> <mml:mi>M</mml:mi> <mml:mo>̲</mml:mo> </mml:munder> </mml:math> its motion groupoid $$textrm{Mot}_{{underline{M}}}$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:msub> <mml:mtext>Mot</mml:mtext> <mml:munder> <mml:mi>M</mml:mi> <mml:mo>̲</mml:mo> </mml:munder> </mml:msub> </mml:math> , whose object set is the power set $$ {{mathcal {P}}}M$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:mi>P</mml:mi> <mml:mi>M</mml:mi> </mml:mrow> </mml:math> of M , and whose morphisms are certain equivalence classes of continuous flows of the ‘ambient space’ M , that fix A , acting on $${{mathcal {P}}}M$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:mi>P</mml:mi> <mml:mi>M</mml:mi> </mml:mrow> </mml:math> . These groupoids generalise the classical definition of a motion group associated to a manifold M and a submanifold N , which can be recovered by considering the automorphisms in $$textrm{Mot}_{{underline{M}}}$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:msub> <mml:mtext>Mot</mml:mtext> <mml:munder> <mml:mi>M</mml:mi> <mml:mo>̲</mml:mo> </mml:munder> </mml:msub> </mml:math> of $$Nin {{mathcal {P}}}M$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:mi>N</mml:mi> <mml:mo>∈</mml:mo> <mml:mi>P</mml:mi> <mml:mi>M</mml:mi> </mml:mrow> </mml:math> . We also construct the mapping class groupoid $$textrm{MCG}_{{underline{M}}}$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:msub> <mml:mtext>MCG</mml:mtext> <mml:munder> <mml:mi>M</mml:mi> <mml:mo>̲</mml:mo> </mml:munder> </mml:msub> </mml:math> associated to a pair $${underline{M}}$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:munder> <mml:mi>M</mml:mi> <mml:mo>̲</mml:mo> </mml:munder> </mml:math> with the same object class, whose morphisms are now equivalence classes of homeomorphisms of M , that fix A . We recover the classical definition of the mapping class group of a pair by taking automorphisms at the appropriate object. For each pair $${underline{M}}$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:munder> <mml:mi>M</mml:mi> <mml:mo>̲</mml:mo> </mml:munder> </mml:math> we explicitly construct a functor $${textsf{F}}:textrm{Mot}_{{underline{M}}} rightarrow textrm{MCG}_{{underline{M}}}$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:mi>F</mml:mi> <mml:mo>:</mml:mo> <mml:msub> <mml:mtext>Mot</mml:mtext> <mml:munder> <mml:mi>M</mml:mi> <mml:mo>̲</mml:mo> </mml:munder> </mml:msub> <mml:mo>→</mml:mo> <mml:msub> <mml:mtext>MCG</mml:mtext> <mml:munder> <mml:mi>M</mml:mi> <mml:mo>̲</mml:mo> </mml:munder> </mml:msub> </mml:mrow> </mml:math> , which is the identity on objects, and prove that this is full and faithful, and hence an isomorphism, if $$pi _0$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:msub> <mml:mi>π</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:math> and $$pi _1$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:msub> <mml:mi>π</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:math> of the appropriate space of self-homeomorphisms of M are trivial. In particular, we have an isomorphism in the physically important case $${underline{M}}=([0,1]^n, partial [0,1]^n)$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:munder> <mml:mi>M</mml:mi> <mml:mo>̲</mml:mo> </mml:munder> <mml:mo>=</mml:mo> <mml:mrow> <mml:mo>(</mml:mo> <mml:msup> <mml:mrow> <mml:mo>[</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo>]</mml:mo> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> <mml:mo>,</mml:mo> <mml:mi>∂</mml:mi> <mml:msup> <mml:mrow> <mml:mo>[</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo>]</mml:mo> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> , for any $$nin {mathbb {N}}$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>∈</mml:mo> <mml:mi>N</mml:mi> </mml:mrow> </mml:math> . We show that the congruence relation used in the construction $$textrm{Mot}_{{underline{M}}}$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:msub> <mml:mtext>Mot</mml:mtext> <mml:munder> <mml:mi>M</mml:mi> <mml:mo>̲</mml:mo> </mml:munder> </mml:msub> </mml:math> can be formulated entirely in terms of a level preserving isotopy relation on the trajectories of objects under flows—worldlines (e.g. monotonic ‘tangles’). We examine several explicit examples of $$textrm{Mot}_{{underline{M}}}$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:msub> <mml:mtext>Mot</mml:mtext> <mml:munder> <mml:mi>M</mml:mi> <mml:mo>̲</mml:mo> </mml:munder> </mml:msub> </mml:math> and $$textrm{MCG}_{{underline{M}}}$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:msub> <mml:mtext>MCG</mml:mtext> <mml:munder> <mml:mi>M</mml:mi> <mml:mo>̲</mml:mo> </mml:munder> </mml:msub> </mml:math> demonstrating the utility of the constructions." @default.
- W3138589915 created "2021-03-29" @default.
- W3138589915 creator A5023649020 @default.
- W3138589915 creator A5026873009 @default.
- W3138589915 creator A5046119426 @default.
- W3138589915 date "2023-08-04" @default.
- W3138589915 modified "2023-09-27" @default.
- W3138589915 title "Motion Groupoids and Mapping Class Groupoids" @default.
- W3138589915 cites W1483437019 @default.
- W3138589915 cites W1502157462 @default.
- W3138589915 cites W1510374214 @default.
- W3138589915 cites W1511544527 @default.
- W3138589915 cites W1559217084 @default.
- W3138589915 cites W1782189715 @default.
- W3138589915 cites W1975401041 @default.
- W3138589915 cites W1999363381 @default.
- W3138589915 cites W2012201446 @default.
- W3138589915 cites W2043882275 @default.
- W3138589915 cites W2063741140 @default.
- W3138589915 cites W2076368674 @default.
- W3138589915 cites W2078826930 @default.
- W3138589915 cites W2082916529 @default.
- W3138589915 cites W2083654222 @default.
- W3138589915 cites W2084633334 @default.
- W3138589915 cites W2118381650 @default.
- W3138589915 cites W2138073359 @default.
- W3138589915 cites W2147006058 @default.
- W3138589915 cites W2226631499 @default.
- W3138589915 cites W2285635526 @default.
- W3138589915 cites W2323819116 @default.
- W3138589915 cites W2327745271 @default.
- W3138589915 cites W2334232972 @default.
- W3138589915 cites W2488883109 @default.
- W3138589915 cites W2963662279 @default.
- W3138589915 cites W2963882728 @default.
- W3138589915 cites W3006127167 @default.
- W3138589915 cites W3048538 @default.
- W3138589915 cites W3098109387 @default.
- W3138589915 cites W3099583595 @default.
- W3138589915 cites W3105539903 @default.
- W3138589915 cites W3105845589 @default.
- W3138589915 cites W4230108789 @default.
- W3138589915 cites W4230413446 @default.
- W3138589915 cites W4235840289 @default.
- W3138589915 cites W4240028494 @default.
- W3138589915 cites W4241775545 @default.
- W3138589915 cites W4243494807 @default.
- W3138589915 cites W4253666772 @default.
- W3138589915 cites W4253849548 @default.
- W3138589915 cites W4301787874 @default.
- W3138589915 doi "https://doi.org/10.1007/s00220-023-04755-0" @default.
- W3138589915 hasPublicationYear "2023" @default.
- W3138589915 type Work @default.
- W3138589915 sameAs 3138589915 @default.
- W3138589915 citedByCount "0" @default.
- W3138589915 crossrefType "journal-article" @default.
- W3138589915 hasAuthorship W3138589915A5023649020 @default.
- W3138589915 hasAuthorship W3138589915A5026873009 @default.
- W3138589915 hasAuthorship W3138589915A5046119426 @default.
- W3138589915 hasBestOaLocation W31385899151 @default.
- W3138589915 hasConcept C11413529 @default.
- W3138589915 hasConcept C154945302 @default.
- W3138589915 hasConcept C41008148 @default.
- W3138589915 hasConceptScore W3138589915C11413529 @default.
- W3138589915 hasConceptScore W3138589915C154945302 @default.
- W3138589915 hasConceptScore W3138589915C41008148 @default.
- W3138589915 hasFunder F4320319993 @default.
- W3138589915 hasFunder F4320334627 @default.
- W3138589915 hasIssue "2" @default.
- W3138589915 hasLocation W31385899151 @default.
- W3138589915 hasLocation W31385899152 @default.
- W3138589915 hasOpenAccess W3138589915 @default.
- W3138589915 hasPrimaryLocation W31385899151 @default.
- W3138589915 hasRelatedWork W2051487156 @default.
- W3138589915 hasRelatedWork W2073681303 @default.
- W3138589915 hasRelatedWork W2317200988 @default.
- W3138589915 hasRelatedWork W2358668433 @default.
- W3138589915 hasRelatedWork W2376932109 @default.
- W3138589915 hasRelatedWork W2382290278 @default.
- W3138589915 hasRelatedWork W2386767533 @default.
- W3138589915 hasRelatedWork W2390279801 @default.
- W3138589915 hasRelatedWork W2748952813 @default.
- W3138589915 hasRelatedWork W2899084033 @default.
- W3138589915 hasVolume "402" @default.
- W3138589915 isParatext "false" @default.
- W3138589915 isRetracted "false" @default.
- W3138589915 magId "3138589915" @default.
- W3138589915 workType "article" @default.