Matches in SemOpenAlex for { <https://semopenalex.org/work/W3138633718> ?p ?o ?g. }
- W3138633718 endingPage "100306" @default.
- W3138633718 startingPage "100306" @default.
- W3138633718 abstract "Mapping the drying characteristics of biological products is essential for drying time estimation and reduction of energy consumption. The knowledge of mass transfer parameters during different drying conditions is required for process and equipment design and is of great industrial importance. In this work, an Artificial Neural Network (ANN) approach was adopted to model the vacuum drying kinetics of moringa leaves. Levenberg–Marquardt’s training algorithm with LOGSIGMOID and TANSIGMOID hidden layer transfer functions gave superior results for the prediction of moisture content and moisture ratio, respectively. Further, a comparative evaluation of the predictive capability of ANN and 7 different semi-empirical models was performed. The Page model was found suitable to fit the experimental data with a R 2 comparable to that of ANN. However, the MSE observed for ANN (1.05 × 10 −6 ) was significantly lower than that of Page model (2.56 × 10 -6 to 5.81 × 10 -4 ). Effective moisture diffusivity and mass transfer coefficient increased with increase in temperature from 0.71 × 10 -9 to 1.91 × 10 -9 m 2 /s and, 1.07 × 10 -7 to 4.07 × 10 -7 m/s, respectively. Activation energy for drying of moringa leaves was calculated as 42.84 kJ/mol which showed moderate energy requirements for moisture diffusion. Specific energy consumed was directly affected by drying time and varied from 6.07 to 22.26 kW h/kg. Drying temperature of 60 °C resulted in higher drying rate, lower drying time and energy consumption and therefore, recommended for drying of Moringa olifera leaves." @default.
- W3138633718 created "2021-03-29" @default.
- W3138633718 creator A5044727138 @default.
- W3138633718 creator A5054677576 @default.
- W3138633718 creator A5077967672 @default.
- W3138633718 date "2021-09-01" @default.
- W3138633718 modified "2023-10-13" @default.
- W3138633718 title "Mathematical and artificial neural network modeling for vacuum drying kinetics of Moringa olifera leaves followed by determination of energy consumption and mass transfer parameters" @default.
- W3138633718 cites W1166133673 @default.
- W3138633718 cites W1965665786 @default.
- W3138633718 cites W1991390251 @default.
- W3138633718 cites W2019234830 @default.
- W3138633718 cites W2046734148 @default.
- W3138633718 cites W2047477311 @default.
- W3138633718 cites W2048491721 @default.
- W3138633718 cites W2048509811 @default.
- W3138633718 cites W2061952648 @default.
- W3138633718 cites W2068873595 @default.
- W3138633718 cites W2080527929 @default.
- W3138633718 cites W2081294513 @default.
- W3138633718 cites W2083729368 @default.
- W3138633718 cites W2088160992 @default.
- W3138633718 cites W2093614467 @default.
- W3138633718 cites W2113303010 @default.
- W3138633718 cites W2129856759 @default.
- W3138633718 cites W2135397065 @default.
- W3138633718 cites W2136928445 @default.
- W3138633718 cites W2137095192 @default.
- W3138633718 cites W2145911447 @default.
- W3138633718 cites W2164011230 @default.
- W3138633718 cites W2192622361 @default.
- W3138633718 cites W2300534598 @default.
- W3138633718 cites W2317729099 @default.
- W3138633718 cites W2325819175 @default.
- W3138633718 cites W2561927233 @default.
- W3138633718 cites W2591729553 @default.
- W3138633718 cites W2764071252 @default.
- W3138633718 cites W2791793194 @default.
- W3138633718 cites W2806003641 @default.
- W3138633718 cites W2886397328 @default.
- W3138633718 cites W2887421432 @default.
- W3138633718 cites W2957816517 @default.
- W3138633718 cites W435553252 @default.
- W3138633718 doi "https://doi.org/10.1016/j.jarmap.2021.100306" @default.
- W3138633718 hasPublicationYear "2021" @default.
- W3138633718 type Work @default.
- W3138633718 sameAs 3138633718 @default.
- W3138633718 citedByCount "17" @default.
- W3138633718 countsByYear W31386337182021 @default.
- W3138633718 countsByYear W31386337182022 @default.
- W3138633718 countsByYear W31386337182023 @default.
- W3138633718 crossrefType "journal-article" @default.
- W3138633718 hasAuthorship W3138633718A5044727138 @default.
- W3138633718 hasAuthorship W3138633718A5054677576 @default.
- W3138633718 hasAuthorship W3138633718A5077967672 @default.
- W3138633718 hasConcept C119599485 @default.
- W3138633718 hasConcept C121332964 @default.
- W3138633718 hasConcept C127413603 @default.
- W3138633718 hasConcept C148898269 @default.
- W3138633718 hasConcept C154945302 @default.
- W3138633718 hasConcept C159985019 @default.
- W3138633718 hasConcept C176864760 @default.
- W3138633718 hasConcept C185592680 @default.
- W3138633718 hasConcept C186060115 @default.
- W3138633718 hasConcept C187320778 @default.
- W3138633718 hasConcept C192562407 @default.
- W3138633718 hasConcept C21880701 @default.
- W3138633718 hasConcept C24939127 @default.
- W3138633718 hasConcept C2776836740 @default.
- W3138633718 hasConcept C2780165032 @default.
- W3138633718 hasConcept C2781430364 @default.
- W3138633718 hasConcept C31903555 @default.
- W3138633718 hasConcept C37668627 @default.
- W3138633718 hasConcept C41008148 @default.
- W3138633718 hasConcept C43617362 @default.
- W3138633718 hasConcept C50644808 @default.
- W3138633718 hasConcept C51038369 @default.
- W3138633718 hasConcept C62520636 @default.
- W3138633718 hasConcept C84199377 @default.
- W3138633718 hasConcept C86803240 @default.
- W3138633718 hasConcept C97355855 @default.
- W3138633718 hasConceptScore W3138633718C119599485 @default.
- W3138633718 hasConceptScore W3138633718C121332964 @default.
- W3138633718 hasConceptScore W3138633718C127413603 @default.
- W3138633718 hasConceptScore W3138633718C148898269 @default.
- W3138633718 hasConceptScore W3138633718C154945302 @default.
- W3138633718 hasConceptScore W3138633718C159985019 @default.
- W3138633718 hasConceptScore W3138633718C176864760 @default.
- W3138633718 hasConceptScore W3138633718C185592680 @default.
- W3138633718 hasConceptScore W3138633718C186060115 @default.
- W3138633718 hasConceptScore W3138633718C187320778 @default.
- W3138633718 hasConceptScore W3138633718C192562407 @default.
- W3138633718 hasConceptScore W3138633718C21880701 @default.
- W3138633718 hasConceptScore W3138633718C24939127 @default.
- W3138633718 hasConceptScore W3138633718C2776836740 @default.
- W3138633718 hasConceptScore W3138633718C2780165032 @default.
- W3138633718 hasConceptScore W3138633718C2781430364 @default.
- W3138633718 hasConceptScore W3138633718C31903555 @default.