Matches in SemOpenAlex for { <https://semopenalex.org/work/W3138659839> ?p ?o ?g. }
- W3138659839 endingPage "583" @default.
- W3138659839 startingPage "547" @default.
- W3138659839 abstract "Free Access Appendix A Antennas and Sensors for Medical Applications: A Representative Literature Review Lingnan Song, Lingnan Song Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, USASearch for more papers by this authorYahya Rahmat-Samii, Yahya Rahmat-Samii Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, USASearch for more papers by this author Lingnan Song, Lingnan Song Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, USASearch for more papers by this authorYahya Rahmat-Samii, Yahya Rahmat-Samii Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, USASearch for more papers by this author Book Editor(s):Yahya Rahmat-Samii, Yahya Rahmat-Samii University of California, Los Angeles, USASearch for more papers by this authorErdem Topsakal, Erdem Topsakal Virginia Commonwealth University, Richmond, USASearch for more papers by this author First published: 18 March 2021 https://doi.org/10.1002/9781119683285.app1 AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare References Gruber, B., Froeling, M., Leiner, T., and Klomp, D.W. (2018). RF coils: a practical guide for nonphysicists. Journal of Magnetic Resonance Imaging 48 (3): 590– 604. Hayes, C.E., Edelstein, W.A., Schenck, J.F. et al. (1985). An efficient, highly homogeneous radiofrequency coil for whole-body NMR imaging at 1.5 T. Journal of Magnetic Resonance (1969) 63 (3): 622– 628. Ginsberg, D. and Melchner, M.J. (1970). Optimum geometry of saddle shaped coils for generating a uniform magnetic field. Review of Scientific Instruments 41 (1): 122– 123. Bendall, M.R. and Gordon, R.E. (1983). Depth and refocusing pulses designed for multi-pulse NMR with surface coils. Journal of Magnetic Resonance (1969) 53 (3): 365– 385. Reykowski, A. (1996). Theory and Design of Synthesis Array Coils for Magnetic Resonance Imaging. Ph.D. thesis, Texas A&M University. Bolinger, L., Prammer, M.G., and Leigh, J.S. Jr. (1989). A multiple-frequency coil with a highly uniform B1 field. Journal of Magnetic Resonance (1969) 81 (1): 162– 166. Smith, M., Zhai, X., Kurpad, K. et al. (2011). Excite and receive solenoid radiofrequency coil for MRI-guided breast interventions. Magnetic Resonance in Medicine 65 (6): 1799– 1804. Wright, A.C., Lemdiasov, R., Connick, T.J. et al. (2011). Helmholtz-pair transmit coil with integrated receive array for high-resolution MRI of trabecular bone in the distal tibia at 7 T. Journal of Magnetic Resonance 210 (1): 113– 122. Wald, L.L. and Adalsteinsson, E. (2009). Parallel transmit technology for high field MRI. Magnetom Flash 40 (1): 2009. Kumar, A., Edelstein, W.A., and Bottomley, P.A. (2009). Noise figure limits for circular loop MR coils. Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine 61 (5): 1201– 1209. Wright, S.M. and Wald, L.L. (1997). Theory and application of array coils in MR spectroscopy. NMR in Biomedicine: An International Journal Devoted to the Development and Application of Magnetic Resonance In Vivo 10 (8): 394– 410. Pruessmann, K.P., Weiger, M., Scheidegger, M.B., and Boesiger, P. (1999). Sense: sensitivity encoding for fast MRI. Magnetic Resonance in Medicine 42 (5): 952– 962. Wiesinger, F., Boesiger, P., and Pruessmann, K.P. (2004). Electrodynamics and ultimate SNR in parallel MR imaging. Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine 52 (2): 376– 390. Keil, B. and Wald, L.L. (2013). Massively parallel MRI detector arrays. Journal of Magnetic Resonance 229: 75– 89. Roemer, P.B., Edelstein, W.A., Hayes, C.E. et al. (1990). The NMR phased array. Magnetic Resonance in Medicine 16 (2): 192– 225. Jevtic, J. (2001). Ladder networks for capacitive decoupling in phased-array coils. Proceedings of the 9th Annual Meeting of ISMRM, Glasgow, Scotland, vol. 17. Lee, R.F., Giaquinto, R.O., and Hardy, C.J. (2002). Coupling and decoupling theory and its application to the MRI phased array. Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine 48 (1): 203– 213. Hurshkainen, A.A., Derzhavskaya, T.A., Glybovski, S.B. et al. (2016). Element decoupling of 7 T dipole body arrays by EBG metasurface structures: experimental verification. Journal of Magnetic Resonance 269: 87– 96. Slobozhanyuk, A.P., Poddubny, A.N., Raaijmakers, A.J. et al. (2016). Enhancement of magnetic resonance imaging with metasurfaces. Advanced Materials 28 (9): 1832– 1838. Corea, J.R., Flynn, A.M., Lechˆene, B. et al. (2016). Screen-printed flexible MRI receive coils. Nature Communications 7: 10839. Malko, J.A., McClees, E.C., Braun, I.F. et al. (1986). A flexible mercury-filled surface coil for MR imaging. American Journal of Neuroradiology 7 (2): 246– 247. Zhang, D. and Rahmat-Samii, Y. (2019). A novel flexible electro-textile 3T MRI RF coil array for carotid artery imaging: design, characterization and prototyping. IEEE Transactions on Antennas and Propagation 67 (8): 5115– 5125. Nordmeyer-Massner, J., De Zanche, N., and Pruessmann, K. (2012). Stretchable coil arrays: application to knee imaging under varying flexion angles. Magnetic Resonance in Medicine 67 (3): 872– 879. Venook, R.D., Hargreaves, B.A., Gold, G.E. et al. (2005). Automatic tuning of flexible interventional RF receiver coils. Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine 54 (4): 983– 993. Hassan, A.M. and El-Shenawee, M. (2011). Review of electromagnetic techniques for breast cancer detection. IEEE Reviews in Biomedical Engineering 4: 103– 118. Chandra, R., Zhou, H., Balasingham, I., and Narayanan, R.M. (2015). On the opportunities and challenges in microwave medical sensing and imaging. IEEE Transactions on Biomedical Engineering 62 (7): 1667– 1682. Afsari, A., Abbosh, A.M., and Rahmat-Samii, Y. (2018). Modified born iterative method in medical electromagnetic tomography using magnetic field fluctuation contrast source operator. IEEE Transactions on Microwave Theory and Techniques 67 (1): 454– 463. Afsari, A., Abbosh, A.M., and Rahmat-Samii, Y. (2018). A rapid medical microwave tomography based on partial differential equations. IEEE Transactions on Antennas and Propagation 66 (10): 5521– 5535. Pisa, S., Pittella, E., and Piuzzi, E. (2016). A survey of radar systems for medical applications. IEEE Aerospace and Electronic Systems Magazine 31 (11): 64– 81. Zakrzewski, M., Raittinen, H., and Vanhala, J. (2011). Comparison of center estimation algorithms for heart and respiration monitoring with microwave doppler radar. IEEE Sensors Journal 12 (3): 627– 634. Semenov, S.Y. and Corfield, D.R. (2008). Microwave tomography for brain imaging: feasibility assessment for stroke detection. International Journal of Antennas and Propagation 2008: 1– 8. Nikolova, N.K. (2011). Microwave imaging for breast cancer. IEEE Microwave Magazine 12 (7): 78– 94. O'Loughlin, D., O'Halloran, M., Moloney, B.M. et al. (2018). Microwave breast imaging: clinical advances and remaining challenges. IEEE Transactions on Biomedical Engineering 65 (11): 2580– 2590. Salvador, S.M., Fear, E.C., Okoniewski, M., and Matyas, J.R. (2010). Exploring joint tissues with microwave imaging. IEEE Transactions on Microwave Theory and Techniques 58 (8): 2307– 2313. Mahmud, M., Islam, M.T., Misran, N. et al. (2018). Ultra-wideband (UWB) antenna sensor-based microwave breast imaging: a review. Sensors 18 (9): 2951. Ojaroudi, M., Ghobadi, C., and Nourinia, J. (2009). Small square monopole antenna with inverted T-shaped notch in the ground plane for UWB application. IEEE Antennas and Wireless Propagation Letters 8: 728– 731. Jafari, H.M., Deen, M.J., Hranilovic, S., and Nikolova, N.K. (2007). A study of ultrawideband antennas for near-field imaging. IEEE Transactions on Antennas and Propagation 55 (4): 1184– 1188. Nilavalan, R., Craddock, I., Preece, A. et al. (2007). Wideband microstrip patch antenna design for breast cancer tumor detection. IET Microwaves, Antennas & Propagation 1 (2): 277– 281. Hagness, S.C., Taflove, A., and Bridges, J.E. (1999). Three-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: design of an antenna-array element. IEEE Transactions on Antennas and Propagation 47 (5): 783– 791. Bourqui, J., Okoniewski, M., and Fear, E.C. (2010). Balanced antipodal Vivaldi antenna with dielectric director for near-field microwave imaging. IEEE Transactions on Antennas and Propagation 58 (7): 2318– 2326. Amineh, R.K., Ravan, M., Trehan, A., and Nikolova, N.K. (2010). Near-field microwave imaging based on aperture raster scanning with TEM horn antennas. IEEE Transactions on Antennas and Propagation 59 (3): 928– 940. Li, X., Hagness, S.C., Choi, M.K., and van der Weide, D.W. (2003). Numerical and experimental investigation of an ultrawideband ridged pyramidal horn antenna with curved launching plane for pulse radiation. IEEE Antennas and Wireless Propagation Letters 2: 259– 262. Porter, E., Bahrami, H., Santorelli, A. et al. (2016). A wearable microwave antenna array for time-domain breast tumor screening. IEEE Transactions on Medical Imaging 35 (6): 1501– 1509. Gilmore, C., Mojabi, P., Zakaria, A. et al. (2009). A wideband microwave tomography system with a novel frequency selection procedure. IEEE Transactions on Biomedical Engineering 57 (4): 894– 904. Saenz, E., Guven, K., Ozbay, E. et al. (2010). Decoupling of multifrequency dipole antenna arrays for microwave imaging applications. International Journal of Antennas and Propagation 2010: 1– 8. Saenz, E., Ederra, I., Gonzalo, R. et al. (2009). Coupling reduction between dipole antenna elements by using a planar meta-surface. IEEE Transactions on Antennas and Propagation 57 (2): 383– 394. ITU. International Telecommunications Union-Radiocommunications (ITU-R), Radio Regulations, SA1346. Geneva, Switzerland: ITU. F. C. Commission et al. (1999). Medical implant communications service (MICS) federal register. Rules Regulations 64 (240): 69 926– 69 934. IEEE Standards Coordinating Committee. (2006). IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz. IEEE Std C95.1-2005 (Revision of IEEE Std C95.1-1991), April 2006, 1–238. Khan, M.W.A., Sydänheimo, L., Ukkonen, L., and Björninen, T. (2017). Inductively powered pressure sensing system integrating a far-field data transmitter for monitoring of intracranial pressure. IEEE Sensors Journal 17 (7): 2191– 2197. Moradi, E., Sydänheimo, L., Bova, G.S., and Ukkonen, L. (2017). Measurement of wireless power transfer to deep-tissue RFID-based implants using wireless repeater node. IEEE Antennas and Wireless Propagation Letters 16: 2171– 2174. Song, L. and Rahmat-Samii, Y. (2017). An end-to-end implanted brain–machine interface antenna system performance characterizations and development. IEEE Transactions on Antennas and Propagation 65 (7): 3399– 3408. Moncion, C., Balachandar, L., Bojja-Venkatakrishnan, S. et al. (2019). Fully-passive wireless implant for neuropotential acquisition: an in vivo validation. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology 3 (3): 199– 205. Mark, M. (2011). Powering mm-size Wireless Implants for Brain-Machine Interfaces. Ph.D. dissertation, UC Berkeley. Chen, Y. (2013). Reflective impulse radios: principles and design. Ph.D. dissertation, UC Berkeley. Poon, A.S.Y., O'Driscoll, S., and Meng, T.H. (2010). Optimal frequency for wireless power transmission into dispersive tissue. IEEE Transactions on Antennas and Propagation 58 (5): 1739– 1750. Leelatien, P., Ito, K., Saito, K. et al. (2018). Channel characteristics and wireless telemetry performance of transplanted organ monitoring system using ultrawideband communication. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology 2 (2): 94– 101. Rahmat-Samii, Y. and Kim, J. (2005). Implanted antennas in medical wireless communications. Synthesis Lectures on Antennas 1 (1): 1– 82. Azad, U., Jing, H.C., and Wang, Y.E. (2012). Link budget and capacity performance of inductively coupled resonant loops. IEEE Transactions on Antennas and Propagation 60 (5): 2453– 2461. Pichorim, S.F. and Abatti, P.J. (2004). Design of coils for millimeter-and submillimeter-sized biotelemetry. IEEE Transactions on Biomedical Engineering 51 (8): 1487– 1489. Best, S.R. (2009). A low Q electrically small magnetic (TE mode) dipole. IEEE Antennas and Wireless Propagation Letters 8: 572– 575. Khan, M.W.A., Rizwan, M., Sydänheimo, L. et al. (2017). Characterization of 3-D loop antenna to overcome the impact of small lateral misalignment in wirelessly powered intracranial pressure monitoring system. IEEE Transactions on Antennas and Propagation 65 (12): 7405– 7410. Qing, X., Goh, C.K., and Chen, Z.N. (2010). A broadband uhf near-field RFID antenna. IEEE Transactions on Antennas and Propagation 58 (12): 3829– 3838. Yakovlev, A., Jang, J.H., and Pivonka, D. (2016). An 11 μw sub-pJ/bit reconfigurable transceiver for mm-sized wireless implants. IEEE Transactions on Biomedical Circuits and Systems 10 (1): 175– 185. Biederman, W., Yeager, D.J., Narevsky, N. et al. (2013). A fully-integrated, miniaturized (0.125 mm2) 10.5 μw wireless neural sensor. IEEE Journal of Solid-State Circuits 48 (4): 960– 970. Mirbozorgi, S.A., Yeon, P., and Ghovanloo, M. (2017). Robust wireless power transmission to mm-sized free-floating distributed implants. IEEE Transactions on Biomedical Circuits and Systems 11 (3): 692– 702. Topsakal, E. (2014). Wireless medical telemetry: Current status and future directions. 2014 USNC-URSI Radio Science Meeting (Joint with AP-S Symposium). IEEE, 244–244. Liu, C., Guo, Y.-X., and Xiao, S. (2016). A review of implantable antennas for wireless biomedical devices. Forum for Electromagnetic Research Methods and Application Technologies (FERMAT) 14 (3): 1– 11. Kiourti, A. and Nikita, K.S. (2012). Miniature scalp-implantable antennas for telemetry in the MICS and ISM bands: design, safety considerations and link budget analysis. IEEE Transactions on Antennas and Propagation 60 (8): 3568– 3575. Chien, T.-F., Cheng, C.-M., Yang, H.-C. et al. (2010). Development of non-superstrate implantable low-profile CPW-fed ceramic antennas. IEEE Antennas and Wireless Propagation Letters 9: 599– 602. Liu, C., Guo, Y.-X., and Xiao, S. (2012). Compact dual-band antenna for implantable devices. IEEE Antennas and Wireless Propagation Letters 11: 1508– 1511. Karacolak, T., Hood, A.Z., and Topsakal, E. (2008). Design of a dual-band implantable antenna and development of skin mimicking gels for continuous glucose monitoring. IEEE Transactions on Microwave Theory and Techniques 56 (4): 1001– 1008. Asili, M., Green, R., Seran, S., and Topsakal, E. (2012). A small implantable antenna for med radio and ISM bands. IEEE Antennas and Wireless Propagation Letters 11: 1683– 1685. Lee, C.-M., Yo, T.-C., Luo, C.-H. et al. (2007). Compact broadband stacked implantable antenna for biotelemetry with medical devices. Electronics Letters 43 (12): 660– 662. Quevedo-Teruel, O., Kehn, M.N.M., and Rajo-Iglesias, E. (2011). Dual-band patch antennas based on short-circuited split ring resonators. IEEE Transactions on Antennas and Propagation 59 (8): 2758– 2765. See, T.S., Qing, X., Liu, W., and Chen, Z.N. (2015). A wideband ultra-thin differential loop-fed patch antenna for head implants. IEEE Transactions on Antennas and Propagation 63 (7): 3244– 3248. Kim, J. and Rahmat-Samii, Y. (2004). Implanted antennas inside a human body: simulations, designs, and characterizations. IEEE Transactions on Microwave Theory and Techniques 52 (8): 1934– 1943. Bocan, K.N. and Sejdíc, E. (2016). Adaptive transcutaneous power transfer to implantable devices: a state of the art review. Sensors 16 (3): 393. Kim, S., Ho, J.S., Chen, L.Y., and Poon, A.S. (2012). Wireless power transfer to a cardiac implant. Applied Physics Letters 101 (7): 073701. Amin Karami, M. and Inman, D.J. (2012). Powering pacemakers from heartbeat vibrations using linear and nonlinear energy harvesters. Applied Physics Letters 100 (4): 042901. Das, R. and Yoo, H. (2015). Biotelemetry and wireless powering for leadless pacemaker systems. IEEE Microwave and Wireless Components Letters 25 (4): 262– 264. Chow, E.Y., Ouyang, Y., Beier, B. et al. (2009). Evaluation of cardiovascular stents as antennas for implantable wireless applications. IEEE Transactions on Microwave Theory and Techniques 57 (10): 2523– 2532. Sun, Y., Greet, B., Burkland, D., et al. (2017). Wirelessly powered implantable pacemaker with on-chip antenna. 2017 IEEE MTT-S International Microwave Symposium (IMS), June 2017, 1242–1244. Iddan, G., Meron, G., Glukhovsky, A., and Swain, P. (2000). Wireless capsule endoscopy. Nature 405 (6785): 417. Munoz, F., Alici, G., and Li, W. (2014). A review of drug delivery systems for capsule endoscopy. Advanced Drug Delivery Reviews 71: 77– 85. Bertram, J.M., Yang, D., Converse, M.C. et al. (2006). A review of coaxial-based interstitial antennas for hepatic microwave ablation. Critical Reviews in Biomedical Engineering 34 (3): 187– 213. Khan, A.N., Ermakov, A., Sukhorukov, G., and Hao, Y. (2019). Radio frequency controlled wireless drug delivery devices. Applied Physics Reviews 6 (4): 041301. Hao, Y., Khan, A.N., Giddens, H., and Sukhorukov, G. (2019). Characterization of microchamber arrays for targeted drug delivery. 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting. IEEE, 2019, 1–2. Than, T.D., Alici, G., Zhou, H., and Li, W. (2012). A review of localization systems for robotic endoscopic capsules. IEEE Transactions on Biomedical Engineering 59 (9): 2387– 2399. Yuce, M.R. and Dissanayake, T. (2012). Easy-to-swallow wireless telemetry. IEEE Microwave Magazine 13 (6): 90– 101. Ciuti, G., Caliò, R., Camboni, D. et al. (2016). Frontiers of robotic endoscopic capsules: a review. Journal of Micro-Bio Robotics 11 (1–4): 1– 18. Izdebski, P.M., Rajagopalan, H., and Rahmat-Samii, Y. (2009). Conformal ingestible capsule antenna: a novel chandelier meandered design. IEEE Transactions on Antennas and Propagation 57 (4): 900– 909. Rajagopalan, H. and Rahmat-Samii, Y. (2016). Novel antenna designs and characterization methodologies for medical diagnostics and sensing. In: Electromagnetics of Body Area Networks: Antennas, Propagation, and RF Systems (eds. D.H. Werner and Z.H. Jiang). Artech House. Rajagopalan, P.I.H. and Rahmat-Samii, Y. (2011). Antennas in medicine: ingestible capsule antennas. In: Frontiers in Antennas, Next Generation Design and Engineering (ed. F.B. Gross). McGraw-Hill. Thotahewa, K.M., Redoutè, J.-M., and Yuce, M.R. (2015). Propagation, power absorption, and temperature analysis of UWB wireless capsule endoscopy devices operating in the human body. IEEE Transactions on Microwave Theory and Techniques 63 (11): 3823– 3833. Garcia-Pardo, C., Andreu, C., Fornes-Leal, A. et al. (2018). Ultrawideband technology for medical in-body sensor networks: an overview of the human body as a propagation medium, phantoms, and approaches for propagation analysis. IEEE Antennas and Propagation Magazine 60 (3): 19– 33. Liu, C., Guo, Y.-X., and Xiao, S. (2014). Circularly polarized helical antenna for ISM-band ingestible capsule endoscope systems. IEEE Transactions on Antennas and Propagation 62 (12): 6027– 6039. Kwak, S., Chang, K., and Yoon, Y.J. (2006). Small spiral antenna for wideband capsule endoscope system. Electronics Letters 42 (23): 1328– 1329. Yun, S., Kim, K., and Nam, S. (2010). Outer-wall loop antenna for ultrawideband capsule endoscope system. IEEE Antennas and Wireless Propagation Letters 9: 1135– 1138. Yu, H., Irby, G., Peterson, D. et al. (2007). Printed capsule antenna for medication compliance monitoring. Electronics Letters 43 (22): 1179– 1181. Cheng, X., Wu, J., Blank, R. et al. (2012). An omnidirectional wrappable compact patch antenna for wireless endoscope applications. IEEE Antennas and Wireless Propagation Letters 11: 1667– 1670. Rajagopalan, H. and Rahmat-Samii, Y. (2012). Wireless medical telemetry characterization for ingestible capsule antenna designs. IEEE Antennas and Wireless Propagation Letters 11: 1679– 1682. Li, R., Guo, Y.-X., and Du, G. (2018). A conformal circularly polarized antenna for wireless capsule endoscope systems. IEEE Transactions on Antennas and Propagation 66 (4): 2119– 2124. Das, R. and Yoo, H. (2017). A wideband circularly polarized conformal endoscopic antenna system for high-speed data transfer. IEEE Transactions on Antennas and Propagation 65 (6): 2816– 2826. Li, Y., Guo, Y.-X., and Xiao, S. (2017). Orientation insensitive antenna with polarization diversity for wireless capsule endoscope system. IEEE Transactions on Antennas and Propagation 65 (7): 3738– 3743. Bao, Z. (2018). Comparative study of dual-polarized and circularly-polarized antennas at 2.45 GHz for ingestible capsules. IEEE Transactions on Antennas and Propagation 67 (3): 1488– 1500. Na, K., Jang, H., Ma, H., and Bien, F. (2014). Tracking optimal efficiency of magnetic resonance wireless power transfer system for biomedical capsule endoscopy. IEEE Transactions on Microwave Theory and Techniques 63 (1): 295– 304. Machnoor, M., Rodríguez, E.S.G., Kosta, P. et al. (2018). Analysis and design of a 3-coil wireless power transmission system for biomedical applications. IEEE Transactions on Antennas and Propagation 67 (8): 5012– 5024. Sawicki, J.F., Shea, J.D., Behdad, N., and Hagness, S.C. (2017). The impact of frequency on the performance of microwave ablation. International Journal of Hyperthermia 33 (1): 61– 68. Sawicki, J.F., Luyen, H., Mohtashami, Y. et al. (2018). The performance of higher frequency microwave ablation in the presence of perfusion. IEEE Transactions on Biomedical Engineering 66 (1): 257– 262. Asili, M., Colebeck, E., Green, R., and Topsakal, E. (2013). The effect of temperature on antenna return loss for microwave ablation antennas. 2013 US National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM). IEEE, 1–1. Mohtashami, Y., Luyen, H., Sawicki, J.F. et al. (2018). Tools for attacking tumors: performance comparison of triaxial, choke dipole, and balun-free base-fed monopole antennas for microwave ablation. IEEE Antennas and Propagation Magazine 60 (6): 52– 57. Fallahi, H. and Prakash, P. (2018). Antenna designs for microwave tissue ablation. Critical Reviews in Biomedical Engineering 46 (6): 495– 521. King, R.W., Trembly, B., and Strohbehn, J. (1983). The electromagnetic field of an insulated antenna in a conducting or dielectric medium. IEEE Transactions on Microwave Theory and Techniques 31 (7): 574– 583. Yang, D., Bertram, J.M., Converse, M.C. et al. (2006). A floating sleeve antenna yields localized hepatic microwave ablation. IEEE transactions on biomedical engineering 53 (3): 533– 537. McWilliams, B.T., Schnell, E.E., Curto, S. et al. (2015). A directional interstitial antenna for microwave tissue ablation: Theoretical and experimental investigation. IEEE Transactions on Biomedical Engineering 62 (9): 2144– 2150. Gu, Z., Rappaport, C.M., Wang, P.J., and VanderBrink, B.A. (1999). A 2 14-turn spiral antenna for catheter cardiac ablation. IEEE Transactions on Biomedical Engineering 46 (12): 1480– 1482. Sherar, M.D., Gladman, A.S., Davidson, S.R. et al. (2001). Helical antenna arrays for interstitial microwave thermal therapy for prostate cancer: tissue phantom testing and simulations for treatment. Physics in Medicine & Biology 46 (7): 1905. Ryan, T.P. (1991). Comparison of six microwave antennas for hyperthermia treatment of cancer: SAR results for single antennas and arrays. International Journal of Radiation Oncology Biology Physics 21 (2): 403– 413. Heikenfeld, J., Jajack, A., Rogers, J. et al. (2018). Wearable sensors: modalities, challenges, and prospects. Lab on a Chip 18 (2): 217– 248. “Inventing the Apollo spaceflight biomedical sensors,” https://airandspace.si.edu/stories/editorial/inventing-apollo-spaceflight-biomedical-sensors (accessed 2 July 2020). Cunningham, D.D. and Stenken, J.A. (2009). In Vivo Glucose Sensing, vol. 174. John Wiley & Sons. Pang, C., Lee, C., and Suh, K.-Y. (2013). Recent advances in flexible sensors for wearable and implantable devices. Journal of Applied Polymer Science 130 (3): 1429– 1441. Ukkonen, L. and Rahmat-Samii, Y. (2016). Embroidered textile antennas for body-centric wireless identification and sensing devices. In: Handbook of Antenna Technologies (ed. Z.N. Chen). Springer Science and Business Media. Amjadi, M., Kyung, K.-U., Park, I., and Sitti, M. (2016). Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review. Advanced Functional Materials 26 (11): 1678– 1698. Cohen, D.J., Mitra, D., Peterson, K., and Maharbiz, M.M. (2012). A highly elastic, capacitive strain gauge based on percolating nanotube networks. Nano Letters 12 (4): 1821– 1825. Cai, L., Song, L., Luan, P. et al. (2013). Super-stretchable, transparent carbon nanotube-based capacitive strain sensors for human motion detection. Scientific Reports 3: 3048. Zhao, J., He, C., Yang, R. et al. (2012). Ultra-sensitive strain sensors based on piezoresistive nanographene films. Applied Physics Letters 101 (6): 063112. Xu, F. and Zhu, Y. (2012). Highly conductive and stretchable silver nanowire conductors. Advanced Materials 24 (37): 5117– 5122. Jing, Z., Guang-Yu, Z., and Dong-Xia, S. (2013). Review of graphene-based strain sensors. Chinese Physics B 22 (5): 057701. Kang, D., Pikhitsa, P.V., Choi, Y.W. et al. (2014). Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system. Nature 516 (7530): 222. Yamada, T., Hayamizu, Y., Yamamoto, Y. et al. (2011). A stretchable carbon nanotube strain sensor for human-motion detection. Nature Nanotechnology 6 (5): 296. Hempel, M., Nezich, D., Kong, J., and Hofmann, M. (2012). A novel class of strain gauges based on layered percolative films of 2D materials. Nano Letters 12 (11): 5714– 5718. Amjadi, M., Pichitpajongkit, A., Lee, S. et al. (2014). Highly stretchable and sensitive strain sensor based on silver nanowire–elastomer nanocomposite. ACS Nano 8 (5): 5154– 5163. Yao, S. and Zhu, Y. (2014). Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires. Nanoscale 6 (4): 2345– 2352. Wang, Y., Wang, L., Yang, T. et al. (2014). Wearable and highly sensitive graphene strain sensors for human motion monitoring. Advanced Functional Materials 24 (29): 4666– 4670. Zhou, Y., Bayram, Y., Du, F. et al. (2010). Polymer-carbon nanotube sheets for conformal load bearing antennas. IEEE Transactions on Antennas and Propagation 58 (7): 2169– 2175. Zhong, J., Kiourti, A., Sebastian, T. et al. (2016). Conformal load-bearing spiral antenna on conductive textile threads. IEEE Antennas and Wireless Propagation Letters 16: 230– 233. Yao, S. and Zhu, Y. (2016). Nanomaterial-enabled dry electrodes for electrophysiological sensing: a review. JOM 68 (4): 1145– 1155. Connolly, M. and Buckley, D. (2004). Contact dermatitis from propylene glycol in ECG electrodes, complicated by medicament allergy. Contact Dermatitis 50 (1): 42– 42. Yeo, W.-H., Kim, Y.-S., Lee, J. et al. (2013). Multifunctional epidermal electronics printed directly onto the skin. Advanced Materials 25 (20): 2773– 2778. Yokus, M.A. and Jur, J.S. (2015). Fabric-based wearable dry electrodes for body surface biopotential recording. IEEE Transactions on Biomedical Engineering 63 (2): 423– 430. Kim, D.-H., Lu, N., Ma, R. et al. (2011). Epidermal electronics. Science 333 (6044): 838– 843. Rogers, J.A., Someya, T., and Huang, Y. (2010). Materials and mechanics for stretchable electronics. Science 327 (5973): 1603– 1607. Lim, Y.G., Kim, K.K., and Park, K.S. (2007). ECG recording on a bed during sleep without direct skin-contact. IEEE Transactions on Biomedical Engineering 54 (4): 718– 725. Jeong, J.-W., Kim, M.K., Cheng, H. et al. (2014). Capacitive epidermal electronics for electrically safe, long-term electrophysiological measurements. Advanced Healthcare Materials 3 (5): 642– 648. Tuchin, V. (2007). Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis. Bellingham: SPIE Press. Anderson, R.R. and Parrish, J.A. (1981). The optics of human skin. Journal of Investigative Dermatology 77 (1): 13– 19. Tremper, K.K. (1989). Pulse oximetry. Chest 95 (4): 713– 715. Yelderman, M. and New, J.W. (1983). Evaluation of pulse oximetry. Anesthesiology 59 (4): 349– 352. Allen, J. (2007). Photoplethysmography and its application in clinical physiological measurement. Physiological Measurement 28 (3): R1. Thorniley, M.S., Sinclair, J., Barnett, N. et al. (1998). The use of near-infrared spectroscopy for assessing flap viability during reconstructive surgery. British Journal of Plastic Surgery 51 (3): 218– 226. Boushel, R., Langberg, H., Olesen, J. et al. (2001). Monitoring tissue oxygen availability with near infrared spectroscopy (NIRS) in health and disease. Scandinavian Journal of Medicine &Science in Sports 11 (4): 213– 222. Bigio, I.J. and Mourant, J.R. (1997). Ultraviolet and visible spectroscopies for tissue diagnostics: fluorescence spectroscopy and elastic-scattering spectroscopy. Physics in Medicine & Biology 42 (5): 803. Alfano, R., Tata, D., Cordero, J. et al. (1984). Laser induced fluorescence spectroscopy from native cancerous and normal tissue. IEEE Journal of Quantum Electronics 20 (12): 1507– 1511. Kim, J., Gutruf, P., Chiarelli, A.M. et al. (2017). Miniaturized battery-free wireless systems for wearable pulse oximetry. Advanced Functional Materials 27 (1): 1604373. Lochner, C.M., Khan, Y., Pierre, A., and Arias, A.C. (2014). All-organic optoelectronic sensor for pulse oximetry. Nature Communications 5: 5745. Yokota, T., Zalar, P., Kaltenbrunner, M. et al. (2016). Ultra-flexible organic photonic skin. Science Advances 2 (4): e1501856. Heikenfeld, J. (2016). Non-invasive analyte access and sensing through eccrine sweat: challenges and outlook circa 2016. Electroanalysis 28 (6): 1242– 1249. Grice, E.A. and Segre, J.A. (2011). The skin microbiome. Nature Reviews Microbiology 9 (4): 244. Bandodkar, A.J., Molinnus, D., Mirza, O. et al. (2014). Epidermal tattoo potentiometric sodium sensors with wireless signal transduction for continuous non-invasive sweat monitoring. Biosensors and Bioelectronics 54: 603– 609. Cuartero, M., Parrilla, M., and Crespo, G.A. (2019). Wearable potentiometric sensors for medical applications. Sensors 19 (2): 363. Windmiller, J.R. and Wang, J. (2013). Wearable electrochemical sensors and biosensors: a review. Electroanalysis 25 (1): 29– 46. Arroyo-Curras, N., Somerson, J., Vieira, P.A. et al. (2017). Real-time measurement of small molecules directly in awake, ambulatory animals. Proceedings of the National Academy of Sciences 114 (4): 645– 650. Bandodkar, A.J., Jeerapan, I., You, J.-M. et al. (2015). Highly stretchable fully-printed CNT-based electrochemical sensors and biofuel cells: combining intrinsic and design-induced stretchability. Nano Letters 16 (1): 721– 727. Jia, W., Bandodkar, A.J., Valdés-Ramírez, G. et al. (2013). Electrochemical tattoo biosensors for real-time noninvasive lactate monitoring in human perspiration. Analytical Chemistry 85 (14): 6553– 6560. Bandodkar, A.J., Jia, W., Yardımcı, C. et al. (2014). Tattoo-based noninvasive glucose monitoring: a proof-of-concept study. Analytical Chemistry 87 (1): 394– 398. Kim, J., Jeerapan, I., Imani, S. et al. (2016). Noninvasive alcohol monitoring using a wearable tattoo-based iontophoretic-biosensing system. ACS Sensors 1 (8): 1011– 1019. Sonner, Z., Wilder, E., Gaillard, T. et al. (2017). Integrated sudomotor axon reflex sweat stimulation for continuous sweat analyte analysis with individuals at rest. Lab on a Chip 17 (15): 2550– 2560. Emaminejad, S., Gao, W., Wu, E. et al. (2017). Autonomous sweat extraction and analysis applied to cystic fibrosis and glucose monitoring using a fully integrated wearable platform. Proceedings of the National Academy of Sciences 114 (18): 4625– 4630. Glennon, T., O'Quigley, C., McCaul, M. et al. (2016). ‘SWEATCH’: a wearable platform for harvesting and analyzing sweat sodium content. Electroanalysis 28 (6): 1283– 1289. Gao, W., Emaminejad, S., Nyein, H.Y.Y. et al. (2016). Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529 (7587): 509. Nyein, H.Y.Y., Gao, W., Shahpar, Z. et al. (2016). A wearable electrochemical platform for noninvasive simultaneous monitoring of Ca2+ and pH. ACS Nano 10 (7): 7216– 7224. Farandos, N.M., Yetisen, A.K., Monteiro, M.J. et al. (2015). Contact lens sensors in ocular diagnostics. Advanced Healthcare Materials 4 (6): 792– 810. Kim, J., Imani, S., de Araujo, W.R. et al. (2015). Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics. Biosensors and Bioelectronics 74: 1061– 1068. Antenna and Sensor Technologies in Modern Medical Applications ReferencesRelatedInformation" @default.
- W3138659839 created "2021-03-29" @default.
- W3138659839 creator A5050612647 @default.
- W3138659839 creator A5084220071 @default.
- W3138659839 date "2021-03-18" @default.
- W3138659839 modified "2023-09-24" @default.
- W3138659839 title "Appendix A Antennas and Sensors for Medical Applications: A Representative Literature Review" @default.
- W3138659839 cites W1034491903 @default.
- W3138659839 cites W1650175677 @default.
- W3138659839 cites W1924938261 @default.
- W3138659839 cites W1929507333 @default.
- W3138659839 cites W1940091150 @default.
- W3138659839 cites W1964434038 @default.
- W3138659839 cites W1964951804 @default.
- W3138659839 cites W1966417316 @default.
- W3138659839 cites W1973484755 @default.
- W3138659839 cites W1973824425 @default.
- W3138659839 cites W1977366816 @default.
- W3138659839 cites W1977734969 @default.
- W3138659839 cites W1979848766 @default.
- W3138659839 cites W1981889904 @default.
- W3138659839 cites W1983532768 @default.
- W3138659839 cites W1987198752 @default.
- W3138659839 cites W1989172022 @default.
- W3138659839 cites W1990634755 @default.
- W3138659839 cites W1992500828 @default.
- W3138659839 cites W1995296652 @default.
- W3138659839 cites W1997984017 @default.
- W3138659839 cites W1999653735 @default.
- W3138659839 cites W1999959880 @default.
- W3138659839 cites W2001357737 @default.
- W3138659839 cites W2001650137 @default.
- W3138659839 cites W2002241646 @default.
- W3138659839 cites W2009256678 @default.
- W3138659839 cites W2009373531 @default.
- W3138659839 cites W2010381176 @default.
- W3138659839 cites W2011062532 @default.
- W3138659839 cites W2011697491 @default.
- W3138659839 cites W2013816305 @default.
- W3138659839 cites W2022758665 @default.
- W3138659839 cites W2025470654 @default.
- W3138659839 cites W2026350097 @default.
- W3138659839 cites W2026413900 @default.
- W3138659839 cites W2028472746 @default.
- W3138659839 cites W2032453558 @default.
- W3138659839 cites W2033787590 @default.
- W3138659839 cites W2035559809 @default.
- W3138659839 cites W2037323513 @default.
- W3138659839 cites W2040935603 @default.
- W3138659839 cites W2043261511 @default.
- W3138659839 cites W2043492189 @default.
- W3138659839 cites W2047885502 @default.
- W3138659839 cites W2048479060 @default.
- W3138659839 cites W2049062052 @default.
- W3138659839 cites W2049701356 @default.
- W3138659839 cites W2049737537 @default.
- W3138659839 cites W2051207264 @default.
- W3138659839 cites W2052351374 @default.
- W3138659839 cites W2055793978 @default.
- W3138659839 cites W2055911809 @default.
- W3138659839 cites W2059166680 @default.
- W3138659839 cites W2060081920 @default.
- W3138659839 cites W2060521534 @default.
- W3138659839 cites W2063926442 @default.
- W3138659839 cites W2065304780 @default.
- W3138659839 cites W2067957471 @default.
- W3138659839 cites W2068896164 @default.
- W3138659839 cites W2069608984 @default.
- W3138659839 cites W2070293554 @default.
- W3138659839 cites W2078190269 @default.
- W3138659839 cites W2079026833 @default.
- W3138659839 cites W2082848186 @default.
- W3138659839 cites W2083872334 @default.
- W3138659839 cites W2088713542 @default.
- W3138659839 cites W2091754855 @default.
- W3138659839 cites W2092156403 @default.
- W3138659839 cites W2096050373 @default.
- W3138659839 cites W2097061451 @default.
- W3138659839 cites W2099353039 @default.
- W3138659839 cites W2102886845 @default.
- W3138659839 cites W2105704179 @default.
- W3138659839 cites W2107958229 @default.
- W3138659839 cites W2108049627 @default.
- W3138659839 cites W2110545851 @default.
- W3138659839 cites W2114164023 @default.
- W3138659839 cites W2115774540 @default.
- W3138659839 cites W2120678579 @default.
- W3138659839 cites W2120752975 @default.
- W3138659839 cites W2120977029 @default.
- W3138659839 cites W2122962576 @default.
- W3138659839 cites W2126518029 @default.
- W3138659839 cites W2128034844 @default.
- W3138659839 cites W2135840203 @default.
- W3138659839 cites W2136177393 @default.
- W3138659839 cites W2137753605 @default.
- W3138659839 cites W2141237838 @default.
- W3138659839 cites W2146371218 @default.
- W3138659839 cites W2147131164 @default.