Matches in SemOpenAlex for { <https://semopenalex.org/work/W3138730015> ?p ?o ?g. }
- W3138730015 endingPage "112369" @default.
- W3138730015 startingPage "112369" @default.
- W3138730015 abstract "Authigenic processes in aqueous environments, such as mineral precipitation, can create turbidity which may have undesired effects on the natural environment and in industrial processes. Turbidity is often used to monitor such environments, as a mean to determine water quality and to follow the industrial processes. However, turbidity develops and grows or dissipates with time as the processes underlying its development advance. This dynamic nature of turbidity has yet to be studied. The proposed pilot Red Sea – Dead Sea project (RSDSP) is to desalinate seawater from the Gulf of Aqaba/Eilat and convey the reject brine, with or without additional seawater, to the Dead Sea to slow down the rate of its water level decline. The pilot is considered environmentally safe and will be used as a mean to determine if increased inflow volumes to stabilize the Dead Sea level will not negatively affect the lake. The mixing of the two very different solutions will lead to gypsum precipitation in the Dead Sea. In a large-scale project, if this gypsum remains in suspension, it may result in increased turbidity and whitening of the Dead Sea's surface water, thereby impacting the lake's appearance, its energy balance, and its touristic and mineral industries. We have studied the dynamic nature of turbidity as gypsum crystals form, grow and sink out of the water column in enriched mixtures of Dead Sea brine with seawater from the Red Sea. Our laboratory experiments suggest that precipitation from simple mixtures is likely to proceed without creating a significant spontaneous increase in turbidity. Turbidity did however develop in sulfate-enriched mixtures that had higher initial oversaturation. In these enriched solutions increased turbidity was observed, which developed faster and to higher values with increasing initial oversaturation. A linear relationship was found between the mass of gypsum precipitated and turbidity. However, this relationship was not universal; a unit mass of precipitated gypsum resulted in higher turbidity when the gypsum precipitated from mixtures having higher %wt of Dead Sea. This study shows that under laboratory conditions, mixtures of Dead Sea - seawater or Dead Sea – reject brine, do not develop turbidity due to gypsum precipitation. However, precipitation process in large scale natural systems can differ from those in the lab. Therefore, our findings cannot unequivocally conclude whether a whitening of the Dead Sea would develop following the implementation of the full scale RSDSP. Nevertheless, it does set forth the factors that need to be monitored during the pilot stage. Moreover, the study also demonstrates that: 1) authigenic processes do not lead to a one-to-one relationship between particulate matter and turbidity; and 2) turbidity readings must first be calibrated before used as a monitoring tool to identify and quantify gypsum formation (e.g., in desalination plants) or for the determination of induction times (e.g., in experiments)." @default.
- W3138730015 created "2021-03-29" @default.
- W3138730015 creator A5024776089 @default.
- W3138730015 creator A5029546107 @default.
- W3138730015 creator A5059677334 @default.
- W3138730015 creator A5071440757 @default.
- W3138730015 date "2021-06-01" @default.
- W3138730015 modified "2023-10-14" @default.
- W3138730015 title "Dynamics of turbidity in gypsum-precipitating brines: The case of the Red Sea – Dead Sea project" @default.
- W3138730015 cites W1579616219 @default.
- W3138730015 cites W1625667667 @default.
- W3138730015 cites W1898872471 @default.
- W3138730015 cites W1980290305 @default.
- W3138730015 cites W1993512430 @default.
- W3138730015 cites W1993885178 @default.
- W3138730015 cites W1994328257 @default.
- W3138730015 cites W1997646605 @default.
- W3138730015 cites W2001674108 @default.
- W3138730015 cites W2002916241 @default.
- W3138730015 cites W2007759399 @default.
- W3138730015 cites W2010352499 @default.
- W3138730015 cites W2013870459 @default.
- W3138730015 cites W2018728976 @default.
- W3138730015 cites W2026559880 @default.
- W3138730015 cites W2027809046 @default.
- W3138730015 cites W2030183237 @default.
- W3138730015 cites W2039705380 @default.
- W3138730015 cites W2048778880 @default.
- W3138730015 cites W2075539934 @default.
- W3138730015 cites W2076554865 @default.
- W3138730015 cites W2083612741 @default.
- W3138730015 cites W2083659200 @default.
- W3138730015 cites W2145237131 @default.
- W3138730015 cites W2155104795 @default.
- W3138730015 cites W2159560648 @default.
- W3138730015 cites W2332874143 @default.
- W3138730015 cites W2466557235 @default.
- W3138730015 cites W2561998623 @default.
- W3138730015 cites W2776929241 @default.
- W3138730015 cites W2904872586 @default.
- W3138730015 cites W2916930659 @default.
- W3138730015 cites W2968988152 @default.
- W3138730015 cites W2989025470 @default.
- W3138730015 cites W3083689073 @default.
- W3138730015 cites W3127605655 @default.
- W3138730015 cites W4247298340 @default.
- W3138730015 doi "https://doi.org/10.1016/j.jenvman.2021.112369" @default.
- W3138730015 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33765576" @default.
- W3138730015 hasPublicationYear "2021" @default.
- W3138730015 type Work @default.
- W3138730015 sameAs 3138730015 @default.
- W3138730015 citedByCount "8" @default.
- W3138730015 countsByYear W31387300152021 @default.
- W3138730015 countsByYear W31387300152022 @default.
- W3138730015 countsByYear W31387300152023 @default.
- W3138730015 crossrefType "journal-article" @default.
- W3138730015 hasAuthorship W3138730015A5024776089 @default.
- W3138730015 hasAuthorship W3138730015A5029546107 @default.
- W3138730015 hasAuthorship W3138730015A5059677334 @default.
- W3138730015 hasAuthorship W3138730015A5071440757 @default.
- W3138730015 hasConcept C107054158 @default.
- W3138730015 hasConcept C111368507 @default.
- W3138730015 hasConcept C121332964 @default.
- W3138730015 hasConcept C122846477 @default.
- W3138730015 hasConcept C127313418 @default.
- W3138730015 hasConcept C151730666 @default.
- W3138730015 hasConcept C153294291 @default.
- W3138730015 hasConcept C187320778 @default.
- W3138730015 hasConcept C197248824 @default.
- W3138730015 hasConcept C2779229104 @default.
- W3138730015 hasConcept C2992278995 @default.
- W3138730015 hasConcept C39432304 @default.
- W3138730015 hasConcept C64016661 @default.
- W3138730015 hasConcept C76886044 @default.
- W3138730015 hasConceptScore W3138730015C107054158 @default.
- W3138730015 hasConceptScore W3138730015C111368507 @default.
- W3138730015 hasConceptScore W3138730015C121332964 @default.
- W3138730015 hasConceptScore W3138730015C122846477 @default.
- W3138730015 hasConceptScore W3138730015C127313418 @default.
- W3138730015 hasConceptScore W3138730015C151730666 @default.
- W3138730015 hasConceptScore W3138730015C153294291 @default.
- W3138730015 hasConceptScore W3138730015C187320778 @default.
- W3138730015 hasConceptScore W3138730015C197248824 @default.
- W3138730015 hasConceptScore W3138730015C2779229104 @default.
- W3138730015 hasConceptScore W3138730015C2992278995 @default.
- W3138730015 hasConceptScore W3138730015C39432304 @default.
- W3138730015 hasConceptScore W3138730015C64016661 @default.
- W3138730015 hasConceptScore W3138730015C76886044 @default.
- W3138730015 hasLocation W31387300151 @default.
- W3138730015 hasOpenAccess W3138730015 @default.
- W3138730015 hasPrimaryLocation W31387300151 @default.
- W3138730015 hasRelatedWork W2030183237 @default.
- W3138730015 hasRelatedWork W2136722724 @default.
- W3138730015 hasRelatedWork W2155104795 @default.
- W3138730015 hasRelatedWork W2748259234 @default.
- W3138730015 hasRelatedWork W2781875450 @default.
- W3138730015 hasRelatedWork W2790679315 @default.
- W3138730015 hasRelatedWork W2799836629 @default.