Matches in SemOpenAlex for { <https://semopenalex.org/work/W3138736036> ?p ?o ?g. }
- W3138736036 endingPage "468" @default.
- W3138736036 startingPage "456" @default.
- W3138736036 abstract "Water plays an important role during the utilization of zeolite catalysts for modern applications such as agricultural and municipal waste conversion. Water has a divergent role in the catalytic cycle: it can cause irreversible catalyst deactivation as well as improve the catalytic activity. The most important water–zeolite interactions occurring on the atomistic level include water adsorption to the active site, hydrolysis of zeolite framework bonds, and the formation of protonated water clusters and water–reactant complexes. Atomistic modeling is indispensable tool in progressing the field of zeolite chemistry and catalyst design. Efforts must be invested in the development of more realistic zeolite models and in situ characterization techniques. Zeolites are one of the most successful catalyst materials of the 20th century and are anticipated to be crucial in the coming decades to transition towards a more sustainable and circular society. Traditional zeolite-based catalytic processes, such as hydrocarbon cracking and transalkylation involving fossil-based resources, are usually performed in the absence of water. With the development of renewable processes based on agricultural and municipal waste, oxygen-rich molecules must be converted, which involves the presence of water. Hence, the impact of water on zeolite-based catalytic performance becomes crucial. In this review, we discuss the current understanding of the role of water during zeolite catalysis and provide insights into mechanistic aspects of water–zeolite interactions. Special attention is paid to molecular modeling approaches. A synergy between experimental and theoretical approaches represents another major challenge in modern catalysis science as it provides routes towards the design of novel and more stable zeolite catalysts. Zeolites are one of the most successful catalyst materials of the 20th century and are anticipated to be crucial in the coming decades to transition towards a more sustainable and circular society. Traditional zeolite-based catalytic processes, such as hydrocarbon cracking and transalkylation involving fossil-based resources, are usually performed in the absence of water. With the development of renewable processes based on agricultural and municipal waste, oxygen-rich molecules must be converted, which involves the presence of water. Hence, the impact of water on zeolite-based catalytic performance becomes crucial. In this review, we discuss the current understanding of the role of water during zeolite catalysis and provide insights into mechanistic aspects of water–zeolite interactions. Special attention is paid to molecular modeling approaches. A synergy between experimental and theoretical approaches represents another major challenge in modern catalysis science as it provides routes towards the design of novel and more stable zeolite catalysts. possess both micro- and mesoporosity. While micropores of diameter below 2 nm are needed to retain the shape-selective properties of zeolites, the introduction of meso- and macropores with dimensions between 2 and 50 nm ensures the optimal accessibility and transport of reactants and products by shortening the diffusion path length. depending on the reaction conditions (i.e., temperature and pressure), water is either in a condensed or a gaseous phase. Hot liquid water refers to liquid-phase conditions with water heated above the boiling point (373–573 K), while steaming occurs at higher temperatures and lower pressures. the most accepted mechanism for the MTO process. The active sites to produce hydrocarbons are a combination of BASs and a pool of both charged and neutral organic reaction intermediates trapped in the zeolite pores, which autocatalyze the methanol conversion. The exact reaction steps are still debated. an empirical and generally accepted axiom of zeolite science, which forbids the occurrence of neighboring aluminium pairs in the zeolite framework. during zeolite steaming, hydrolysis of Al–O bonds occurs leading to the selective removal of Al atoms from the framework (therefore the name ‘dealumination’). While so-called severe steaming is often referred to as a treatment that causes a collapse of the crystal structure and irreversible catalyst deactivation, mild steaming mostly produces catalysts of higher activity. However, there is ambiguity in the literature about the exact conditions under which the treatment is performed [26.Almutairi S.M.T. et al.Influence of steaming on the acidity and the methanol conversion reaction of HZSM-5 zeolite.J. Catal. 2013; 307: 194-203Crossref Scopus (0) Google Scholar,32.Aramburo L. et al.The porosity, acidity, and reactivity of dealuminated zeolite ZSM-5 at the single particle level: the influence of the zeolite architecture.Chem. Eur. J. 2011; 17: 13773-13781Crossref PubMed Scopus (78) Google Scholar,104.Lago R.M. et al.The nature of the catalytic sites in HZSM-5 activity enhancement.Stud. Surf. Sci. Catal. 1986; 28: 677-684Crossref Scopus (187) Google Scholar]. like water-induced dealumination, the zeolite framework structure is affected, but in this case the Si–O bond is broken, which is induced by dint of aqueous (basic) conditions. Desilication is conventionally used in a tandem reaction with dealumination treatment to create secondary mesopores. crystalline aluminosilicate materials with a well-defined porous framework. The elementary building units of zeolites are TO4 tetrahedra, where each T-site can be occupied by either silicon or aluminium atoms. Neighboring tetrahedra are linked at their corners via shared oxygen atoms, producing a great variety of 3D porous structures with shape-selective properties. The inclusion of aluminum in the zeolite structure causes an increase of a local negative charge, which must be compensated by a cation to ensure the overall neutrality of the framework. The cationic sites are sources of Lewis and/or Brønsted acidity, giving zeolites their catalytic properties. Additionally, the Al atom makes the framework hydrophilic, while purely siliceous zeolites are considered hydrophobic. a post-synthetic zeolite treatment method in which the zeolite is exposed to water vapors in a controlled manner at temperatures higher than 673 K. For example, steaming of zeolite Y is a preferred industrial method to create ultrastable zeolite Y with superior hydrothermal stability [25.Kerr G.T. Intracrystalline rearrangement of constitutive water in hydrogen zeolite Y.J. Phys. Chem. 1967; 71: 4155-4156Crossref Scopus (21) Google Scholar]." @default.
- W3138736036 created "2021-03-29" @default.
- W3138736036 creator A5028186618 @default.
- W3138736036 creator A5053188243 @default.
- W3138736036 date "2021-06-01" @default.
- W3138736036 modified "2023-10-13" @default.
- W3138736036 title "Water–active site interactions in zeolites and their relevance in catalysis" @default.
- W3138736036 cites W150756298 @default.
- W3138736036 cites W183201242 @default.
- W3138736036 cites W1973520136 @default.
- W3138736036 cites W1977884051 @default.
- W3138736036 cites W1978928979 @default.
- W3138736036 cites W1980381226 @default.
- W3138736036 cites W1983044347 @default.
- W3138736036 cites W1983304051 @default.
- W3138736036 cites W1991920150 @default.
- W3138736036 cites W2002397717 @default.
- W3138736036 cites W2004468406 @default.
- W3138736036 cites W2004779421 @default.
- W3138736036 cites W2013030167 @default.
- W3138736036 cites W2015824201 @default.
- W3138736036 cites W2020679675 @default.
- W3138736036 cites W2025029575 @default.
- W3138736036 cites W2027603043 @default.
- W3138736036 cites W2029044441 @default.
- W3138736036 cites W2039513300 @default.
- W3138736036 cites W2040450726 @default.
- W3138736036 cites W2050088621 @default.
- W3138736036 cites W2051686232 @default.
- W3138736036 cites W2054780712 @default.
- W3138736036 cites W2058650800 @default.
- W3138736036 cites W2059532039 @default.
- W3138736036 cites W2062194977 @default.
- W3138736036 cites W2063611311 @default.
- W3138736036 cites W2072855945 @default.
- W3138736036 cites W2078768498 @default.
- W3138736036 cites W2084884584 @default.
- W3138736036 cites W2087385869 @default.
- W3138736036 cites W2087452273 @default.
- W3138736036 cites W2088250940 @default.
- W3138736036 cites W2089713666 @default.
- W3138736036 cites W2092441854 @default.
- W3138736036 cites W2108164650 @default.
- W3138736036 cites W2108442558 @default.
- W3138736036 cites W2122263242 @default.
- W3138736036 cites W2123276594 @default.
- W3138736036 cites W2128988133 @default.
- W3138736036 cites W2133877867 @default.
- W3138736036 cites W2136672536 @default.
- W3138736036 cites W2146010488 @default.
- W3138736036 cites W2154519552 @default.
- W3138736036 cites W2155628851 @default.
- W3138736036 cites W2159775165 @default.
- W3138736036 cites W2166864985 @default.
- W3138736036 cites W2233625441 @default.
- W3138736036 cites W2240401688 @default.
- W3138736036 cites W2253400723 @default.
- W3138736036 cites W2254928375 @default.
- W3138736036 cites W2288039881 @default.
- W3138736036 cites W2288921401 @default.
- W3138736036 cites W2290613850 @default.
- W3138736036 cites W2294989098 @default.
- W3138736036 cites W2314439365 @default.
- W3138736036 cites W2314468467 @default.
- W3138736036 cites W2315038330 @default.
- W3138736036 cites W2319563718 @default.
- W3138736036 cites W2321015801 @default.
- W3138736036 cites W2331466055 @default.
- W3138736036 cites W2333393554 @default.
- W3138736036 cites W2334339949 @default.
- W3138736036 cites W2337481085 @default.
- W3138736036 cites W2405416307 @default.
- W3138736036 cites W2471176542 @default.
- W3138736036 cites W2526666919 @default.
- W3138736036 cites W2563469174 @default.
- W3138736036 cites W2591608240 @default.
- W3138736036 cites W2613320769 @default.
- W3138736036 cites W2734995389 @default.
- W3138736036 cites W2740444070 @default.
- W3138736036 cites W2745277766 @default.
- W3138736036 cites W2762932661 @default.
- W3138736036 cites W2774814053 @default.
- W3138736036 cites W2774969180 @default.
- W3138736036 cites W2793454284 @default.
- W3138736036 cites W2799343821 @default.
- W3138736036 cites W2807784077 @default.
- W3138736036 cites W2810874124 @default.
- W3138736036 cites W2841382678 @default.
- W3138736036 cites W2908026539 @default.
- W3138736036 cites W2911910924 @default.
- W3138736036 cites W2913509851 @default.
- W3138736036 cites W2917122851 @default.
- W3138736036 cites W2943492737 @default.
- W3138736036 cites W2943735856 @default.
- W3138736036 cites W2952623355 @default.
- W3138736036 cites W2953012779 @default.
- W3138736036 cites W2963908814 @default.
- W3138736036 cites W2979742971 @default.