Matches in SemOpenAlex for { <https://semopenalex.org/work/W3138743904> ?p ?o ?g. }
- W3138743904 endingPage "5040" @default.
- W3138743904 startingPage "5031" @default.
- W3138743904 abstract "Forest fire monitoring plays an important role in forest resource protection. Although satellite remote sensing is an effective way for forest fire monitoring, satellite-based methods can only monitor large-scale forest areas, and they are weak in predicting the specific areas of forest fires. In this article, we first propose an unmanned aerial vehicle (UAV)-enabled system architecture consisting of multiple industrial Internet of Things (IIoTs), in which the data collected by sensors in IIoTs can be delivered to UAVs for processing directly. As the sensors of IIoTs are deployed to monitor different indexes of forest fires, fully considering the priority constraints among sensors can guarantee a quick response of forest fire monitoring. Thus, the priority constraints among the sensors are taken into consideration in this system architecture, and the objective is to minimize the maximum response time of forest fire monitoring. To search for the optimal UAV resource allocation strategy, a learning-based cooperative particle swarm optimization (LCPSO) algorithm with a Markov random field (MRF)-based decomposition strategy is proposed. The solution space of UAV resource allocation is decomposed into subsolution spaces according to the decomposed decision variables by the MRF network structure, and the optimal resource allocation strategy is searched by LCPSO in multiple subsolution spaces cooperatively. Three simulation experiments on two datasets are designed, and the simulation results compared with the state-of-the-art methods verify the validity of LCPSO, which are reflected by the quickest response time of forest fire monitoring." @default.
- W3138743904 created "2021-03-29" @default.
- W3138743904 creator A5026853484 @default.
- W3138743904 creator A5067984316 @default.
- W3138743904 creator A5080165465 @default.
- W3138743904 date "2021-07-01" @default.
- W3138743904 modified "2023-10-17" @default.
- W3138743904 title "Learning-Based Resource Allocation Strategy for Industrial IoT in UAV-Enabled MEC Systems" @default.
- W3138743904 cites W1904504745 @default.
- W3138743904 cites W1994751434 @default.
- W3138743904 cites W1999445878 @default.
- W3138743904 cites W1999534989 @default.
- W3138743904 cites W2008615160 @default.
- W3138743904 cites W2009062596 @default.
- W3138743904 cites W2035047474 @default.
- W3138743904 cites W2038194220 @default.
- W3138743904 cites W2058662258 @default.
- W3138743904 cites W2087376002 @default.
- W3138743904 cites W2144429462 @default.
- W3138743904 cites W2194983992 @default.
- W3138743904 cites W2260286117 @default.
- W3138743904 cites W2522123397 @default.
- W3138743904 cites W2554924637 @default.
- W3138743904 cites W2586992378 @default.
- W3138743904 cites W2593769694 @default.
- W3138743904 cites W2608705546 @default.
- W3138743904 cites W2753754628 @default.
- W3138743904 cites W2769744156 @default.
- W3138743904 cites W2792782202 @default.
- W3138743904 cites W2802480283 @default.
- W3138743904 cites W2806526175 @default.
- W3138743904 cites W2807184217 @default.
- W3138743904 cites W2895667242 @default.
- W3138743904 cites W2897890824 @default.
- W3138743904 cites W2899051739 @default.
- W3138743904 cites W2899183567 @default.
- W3138743904 cites W2908537295 @default.
- W3138743904 cites W2914296386 @default.
- W3138743904 cites W2945102934 @default.
- W3138743904 cites W2951054802 @default.
- W3138743904 cites W2961269959 @default.
- W3138743904 cites W2962943958 @default.
- W3138743904 cites W2964052915 @default.
- W3138743904 cites W2996989685 @default.
- W3138743904 cites W2998711990 @default.
- W3138743904 cites W3015351895 @default.
- W3138743904 cites W3021252719 @default.
- W3138743904 doi "https://doi.org/10.1109/tii.2020.3024170" @default.
- W3138743904 hasPublicationYear "2021" @default.
- W3138743904 type Work @default.
- W3138743904 sameAs 3138743904 @default.
- W3138743904 citedByCount "55" @default.
- W3138743904 countsByYear W31387439042021 @default.
- W3138743904 countsByYear W31387439042022 @default.
- W3138743904 countsByYear W31387439042023 @default.
- W3138743904 crossrefType "journal-article" @default.
- W3138743904 hasAuthorship W3138743904A5026853484 @default.
- W3138743904 hasAuthorship W3138743904A5067984316 @default.
- W3138743904 hasAuthorship W3138743904A5080165465 @default.
- W3138743904 hasConcept C119857082 @default.
- W3138743904 hasConcept C154945302 @default.
- W3138743904 hasConcept C169258074 @default.
- W3138743904 hasConcept C205649164 @default.
- W3138743904 hasConcept C206345919 @default.
- W3138743904 hasConcept C2778755073 @default.
- W3138743904 hasConcept C29202148 @default.
- W3138743904 hasConcept C31258907 @default.
- W3138743904 hasConcept C41008148 @default.
- W3138743904 hasConcept C58640448 @default.
- W3138743904 hasConcept C62649853 @default.
- W3138743904 hasConcept C79403827 @default.
- W3138743904 hasConcept C85617194 @default.
- W3138743904 hasConceptScore W3138743904C119857082 @default.
- W3138743904 hasConceptScore W3138743904C154945302 @default.
- W3138743904 hasConceptScore W3138743904C169258074 @default.
- W3138743904 hasConceptScore W3138743904C205649164 @default.
- W3138743904 hasConceptScore W3138743904C206345919 @default.
- W3138743904 hasConceptScore W3138743904C2778755073 @default.
- W3138743904 hasConceptScore W3138743904C29202148 @default.
- W3138743904 hasConceptScore W3138743904C31258907 @default.
- W3138743904 hasConceptScore W3138743904C41008148 @default.
- W3138743904 hasConceptScore W3138743904C58640448 @default.
- W3138743904 hasConceptScore W3138743904C62649853 @default.
- W3138743904 hasConceptScore W3138743904C79403827 @default.
- W3138743904 hasConceptScore W3138743904C85617194 @default.
- W3138743904 hasFunder F4320321001 @default.
- W3138743904 hasIssue "7" @default.
- W3138743904 hasLocation W31387439041 @default.
- W3138743904 hasOpenAccess W3138743904 @default.
- W3138743904 hasPrimaryLocation W31387439041 @default.
- W3138743904 hasRelatedWork W1519398290 @default.
- W3138743904 hasRelatedWork W1974511032 @default.
- W3138743904 hasRelatedWork W2099766519 @default.
- W3138743904 hasRelatedWork W2139939267 @default.
- W3138743904 hasRelatedWork W2363207358 @default.
- W3138743904 hasRelatedWork W2382084165 @default.
- W3138743904 hasRelatedWork W2512144135 @default.
- W3138743904 hasRelatedWork W2609203195 @default.