Matches in SemOpenAlex for { <https://semopenalex.org/work/W3138771845> ?p ?o ?g. }
- W3138771845 endingPage "11" @default.
- W3138771845 startingPage "1" @default.
- W3138771845 abstract "Nonnegative matrix factorization (NMF) is an efficient dimension reduction technique, which has been extensively used in the fields, such as image processing, automatic control, and machine learning. The application to fault detection (FD) is still not investigated sufficiently. To improve the performance of NMF-based FD approaches, this article proposes a novel FD approach using the structured joint sparse NMF (SJSNMF) for non-Gaussian processes. The basic idea of SJSNMF is to incorporate the graph Laplacian to preserve the relationship between process variables and operation units and introduce the joint sparsity to exploit row-wise sparsity of the latent variables. Technically, an optimization algorithm based on the alternating direction method of multipliers (ADMM) is established. To detect the fault, two test statistical metrics are adopted and the kernel density estimation (KDE) is calculated to estimate the control limit. The effectiveness of the proposed SJSNMF is verified on the benchmark Tennessee Eastman process (TEP) and the cylinder-piston assembly of diesel engines." @default.
- W3138771845 created "2021-03-29" @default.
- W3138771845 creator A5023023327 @default.
- W3138771845 creator A5076724562 @default.
- W3138771845 creator A5082668502 @default.
- W3138771845 creator A5084559824 @default.
- W3138771845 date "2021-01-01" @default.
- W3138771845 modified "2023-10-15" @default.
- W3138771845 title "Fault Detection Using Structured Joint Sparse Nonnegative Matrix Factorization" @default.
- W3138771845 cites W1597576211 @default.
- W3138771845 cites W1897892887 @default.
- W3138771845 cites W1902027874 @default.
- W3138771845 cites W1937543970 @default.
- W3138771845 cites W1970537494 @default.
- W3138771845 cites W1979357005 @default.
- W3138771845 cites W2004186751 @default.
- W3138771845 cites W2013029404 @default.
- W3138771845 cites W2040223133 @default.
- W3138771845 cites W2059745395 @default.
- W3138771845 cites W2060649099 @default.
- W3138771845 cites W2062403535 @default.
- W3138771845 cites W2093492509 @default.
- W3138771845 cites W2108119513 @default.
- W3138771845 cites W2110096996 @default.
- W3138771845 cites W2137075850 @default.
- W3138771845 cites W2144359569 @default.
- W3138771845 cites W2296544499 @default.
- W3138771845 cites W2405400056 @default.
- W3138771845 cites W2405409114 @default.
- W3138771845 cites W2417225786 @default.
- W3138771845 cites W2494112937 @default.
- W3138771845 cites W2598164018 @default.
- W3138771845 cites W2603304445 @default.
- W3138771845 cites W2605904273 @default.
- W3138771845 cites W2735107368 @default.
- W3138771845 cites W2741385306 @default.
- W3138771845 cites W2741786247 @default.
- W3138771845 cites W2767234670 @default.
- W3138771845 cites W2790257930 @default.
- W3138771845 cites W2791036512 @default.
- W3138771845 cites W2890863938 @default.
- W3138771845 cites W2897085248 @default.
- W3138771845 cites W2915989068 @default.
- W3138771845 cites W2922367511 @default.
- W3138771845 cites W2963100999 @default.
- W3138771845 cites W2977049471 @default.
- W3138771845 cites W2982795604 @default.
- W3138771845 cites W2987151437 @default.
- W3138771845 cites W3017286993 @default.
- W3138771845 cites W3038503562 @default.
- W3138771845 cites W3047865406 @default.
- W3138771845 cites W4292363360 @default.
- W3138771845 doi "https://doi.org/10.1109/tim.2021.3067218" @default.
- W3138771845 hasPublicationYear "2021" @default.
- W3138771845 type Work @default.
- W3138771845 sameAs 3138771845 @default.
- W3138771845 citedByCount "10" @default.
- W3138771845 countsByYear W31387718452021 @default.
- W3138771845 countsByYear W31387718452022 @default.
- W3138771845 countsByYear W31387718452023 @default.
- W3138771845 crossrefType "journal-article" @default.
- W3138771845 hasAuthorship W3138771845A5023023327 @default.
- W3138771845 hasAuthorship W3138771845A5076724562 @default.
- W3138771845 hasAuthorship W3138771845A5082668502 @default.
- W3138771845 hasAuthorship W3138771845A5084559824 @default.
- W3138771845 hasConcept C11413529 @default.
- W3138771845 hasConcept C114614502 @default.
- W3138771845 hasConcept C121332964 @default.
- W3138771845 hasConcept C152671427 @default.
- W3138771845 hasConcept C152745839 @default.
- W3138771845 hasConcept C153180895 @default.
- W3138771845 hasConcept C154945302 @default.
- W3138771845 hasConcept C158693339 @default.
- W3138771845 hasConcept C163716315 @default.
- W3138771845 hasConcept C172707124 @default.
- W3138771845 hasConcept C33923547 @default.
- W3138771845 hasConcept C41008148 @default.
- W3138771845 hasConcept C42355184 @default.
- W3138771845 hasConcept C56372850 @default.
- W3138771845 hasConcept C62520636 @default.
- W3138771845 hasConcept C74193536 @default.
- W3138771845 hasConceptScore W3138771845C11413529 @default.
- W3138771845 hasConceptScore W3138771845C114614502 @default.
- W3138771845 hasConceptScore W3138771845C121332964 @default.
- W3138771845 hasConceptScore W3138771845C152671427 @default.
- W3138771845 hasConceptScore W3138771845C152745839 @default.
- W3138771845 hasConceptScore W3138771845C153180895 @default.
- W3138771845 hasConceptScore W3138771845C154945302 @default.
- W3138771845 hasConceptScore W3138771845C158693339 @default.
- W3138771845 hasConceptScore W3138771845C163716315 @default.
- W3138771845 hasConceptScore W3138771845C172707124 @default.
- W3138771845 hasConceptScore W3138771845C33923547 @default.
- W3138771845 hasConceptScore W3138771845C41008148 @default.
- W3138771845 hasConceptScore W3138771845C42355184 @default.
- W3138771845 hasConceptScore W3138771845C56372850 @default.
- W3138771845 hasConceptScore W3138771845C62520636 @default.
- W3138771845 hasConceptScore W3138771845C74193536 @default.
- W3138771845 hasFunder F4320321001 @default.