Matches in SemOpenAlex for { <https://semopenalex.org/work/W3138874558> ?p ?o ?g. }
- W3138874558 endingPage "353" @default.
- W3138874558 startingPage "339" @default.
- W3138874558 abstract "The vast majority of the existing diagnostic studies using deep learning techniques for rotating machinery focus on the vibration analysis under steady rotating speed. Nevertheless, the collected vibration signals are sensitive to time-varying speeds and the vibration sensors may cause structure damage of equipment after long-term close contact. Aiming at these aforementioned problems, a modified Gaussian convolutional deep belief network driven by infrared thermal imaging is proposed to automatically diagnose different faults of rotor-bearing system under time-varying speeds. First, infrared thermal images are measured to characterize the working states of rotor-bearing system to reduce the impact of changeable speeds. Second, Gaussian units are used to construct Gaussian convolutional deep belief network to well deal with infrared thermal images. Finally, trackable learning rate is designed to modify the training algorithm to enhance the performance. The comparison results verify the feasibility of the proposed method, which outperforms the other methods." @default.
- W3138874558 created "2021-03-29" @default.
- W3138874558 creator A5006189098 @default.
- W3138874558 creator A5019493589 @default.
- W3138874558 creator A5052658396 @default.
- W3138874558 creator A5090812630 @default.
- W3138874558 date "2021-03-19" @default.
- W3138874558 modified "2023-10-14" @default.
- W3138874558 title "Modified Gaussian convolutional deep belief network and infrared thermal imaging for intelligent fault diagnosis of rotor-bearing system under time-varying speeds" @default.
- W3138874558 cites W1838067451 @default.
- W3138874558 cites W1996401906 @default.
- W3138874558 cites W2043181992 @default.
- W3138874558 cites W2050018615 @default.
- W3138874558 cites W2165991108 @default.
- W3138874558 cites W2428325231 @default.
- W3138874558 cites W2560181314 @default.
- W3138874558 cites W2612554669 @default.
- W3138874558 cites W2724573302 @default.
- W3138874558 cites W2744604411 @default.
- W3138874558 cites W2746111230 @default.
- W3138874558 cites W2748752331 @default.
- W3138874558 cites W2767031373 @default.
- W3138874558 cites W2889638992 @default.
- W3138874558 cites W2910029951 @default.
- W3138874558 cites W2939217062 @default.
- W3138874558 cites W2962949934 @default.
- W3138874558 cites W2964937757 @default.
- W3138874558 cites W2966008650 @default.
- W3138874558 cites W2967400878 @default.
- W3138874558 cites W2971524931 @default.
- W3138874558 cites W2971801691 @default.
- W3138874558 cites W2978144367 @default.
- W3138874558 cites W2982059695 @default.
- W3138874558 cites W2995988442 @default.
- W3138874558 cites W2998780022 @default.
- W3138874558 cites W3000591445 @default.
- W3138874558 cites W3002064451 @default.
- W3138874558 cites W3007806969 @default.
- W3138874558 cites W3015801892 @default.
- W3138874558 cites W3016452186 @default.
- W3138874558 cites W3033802474 @default.
- W3138874558 cites W3037999295 @default.
- W3138874558 cites W3070925597 @default.
- W3138874558 cites W867303916 @default.
- W3138874558 doi "https://doi.org/10.1177/1475921721998957" @default.
- W3138874558 hasPublicationYear "2021" @default.
- W3138874558 type Work @default.
- W3138874558 sameAs 3138874558 @default.
- W3138874558 citedByCount "37" @default.
- W3138874558 countsByYear W31388745582022 @default.
- W3138874558 countsByYear W31388745582023 @default.
- W3138874558 crossrefType "journal-article" @default.
- W3138874558 hasAuthorship W3138874558A5006189098 @default.
- W3138874558 hasAuthorship W3138874558A5019493589 @default.
- W3138874558 hasAuthorship W3138874558A5052658396 @default.
- W3138874558 hasAuthorship W3138874558A5090812630 @default.
- W3138874558 hasConcept C108583219 @default.
- W3138874558 hasConcept C120665830 @default.
- W3138874558 hasConcept C121332964 @default.
- W3138874558 hasConcept C127313418 @default.
- W3138874558 hasConcept C127413603 @default.
- W3138874558 hasConcept C153180895 @default.
- W3138874558 hasConcept C153294291 @default.
- W3138874558 hasConcept C154945302 @default.
- W3138874558 hasConcept C158355884 @default.
- W3138874558 hasConcept C163716315 @default.
- W3138874558 hasConcept C165205528 @default.
- W3138874558 hasConcept C17281054 @default.
- W3138874558 hasConcept C175551986 @default.
- W3138874558 hasConcept C192209626 @default.
- W3138874558 hasConcept C198394728 @default.
- W3138874558 hasConcept C199978012 @default.
- W3138874558 hasConcept C204530211 @default.
- W3138874558 hasConcept C24890656 @default.
- W3138874558 hasConcept C2775924081 @default.
- W3138874558 hasConcept C31972630 @default.
- W3138874558 hasConcept C41008148 @default.
- W3138874558 hasConcept C47446073 @default.
- W3138874558 hasConcept C62520636 @default.
- W3138874558 hasConcept C78519656 @default.
- W3138874558 hasConcept C81363708 @default.
- W3138874558 hasConcept C97385483 @default.
- W3138874558 hasConceptScore W3138874558C108583219 @default.
- W3138874558 hasConceptScore W3138874558C120665830 @default.
- W3138874558 hasConceptScore W3138874558C121332964 @default.
- W3138874558 hasConceptScore W3138874558C127313418 @default.
- W3138874558 hasConceptScore W3138874558C127413603 @default.
- W3138874558 hasConceptScore W3138874558C153180895 @default.
- W3138874558 hasConceptScore W3138874558C153294291 @default.
- W3138874558 hasConceptScore W3138874558C154945302 @default.
- W3138874558 hasConceptScore W3138874558C158355884 @default.
- W3138874558 hasConceptScore W3138874558C163716315 @default.
- W3138874558 hasConceptScore W3138874558C165205528 @default.
- W3138874558 hasConceptScore W3138874558C17281054 @default.
- W3138874558 hasConceptScore W3138874558C175551986 @default.
- W3138874558 hasConceptScore W3138874558C192209626 @default.
- W3138874558 hasConceptScore W3138874558C198394728 @default.
- W3138874558 hasConceptScore W3138874558C199978012 @default.