Matches in SemOpenAlex for { <https://semopenalex.org/work/W3138932854> ?p ?o ?g. }
- W3138932854 endingPage "3168" @default.
- W3138932854 startingPage "3109" @default.
- W3138932854 abstract "Abstract Relying on the classical connection between backward stochastic differential equations and nonlinear parabolic partial differential equations (PDEs), we propose a new probabilistic learning scheme for solving high-dimensional semilinear parabolic PDEs. This scheme is inspired by the approach coming from machine learning and developed using deep neural networks in Han et al. (2018, Solving high-dimensional partial differential equations using deep learning. Proc. Natl. Acad. Sci., 115, 8505–8510. Our algorithm is based on a Picard iteration scheme in which a sequence of linear-quadratic optimization problem is solved by means of stochastic gradient descent algorithm. In the framework of a linear specification of the approximation space, we manage to prove a convergence result for our scheme, under some smallness condition. In practice, in order to be able to treat high-dimensional examples, we employ sparse-grid approximation spaces. In the case of periodic coefficients and using pre-wavelet basis functions, we obtain an upper bound on the global complexity of our method. It shows, in particular, that the curse of dimensionality is tamed in the sense that in order to achieve a root mean squared error of order $varepsilon $, for a prescribed precision $varepsilon $, the complexity of the Picard algorithm grows polynomially in $varepsilon ^{-1}$ up to some logarithmic factor $|!log (varepsilon )|$, whose exponent grows linearly with respect to the PDE dimension. Various numerical results are presented to validate the performance of our method, and to compare them with some recent machine learning schemes proposed in E et al. (2017, Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations. Commun. Math. Stat., 5, 349–380) and Huré et al. (2020, Deep backward schemes for high-dimensional nonlinear PDEs. Math. Comput., 89, 1547–1579)." @default.
- W3138932854 created "2021-03-29" @default.
- W3138932854 creator A5000567490 @default.
- W3138932854 creator A5031433208 @default.
- W3138932854 creator A5045876009 @default.
- W3138932854 creator A5086295112 @default.
- W3138932854 date "2022-11-09" @default.
- W3138932854 modified "2023-10-14" @default.
- W3138932854 title "A learning scheme by sparse grids and Picard approximations for semilinear parabolic PDEs" @default.
- W3138932854 cites W1593490009 @default.
- W3138932854 cites W1977946148 @default.
- W3138932854 cites W1994791309 @default.
- W3138932854 cites W1999483367 @default.
- W3138932854 cites W2004794023 @default.
- W3138932854 cites W2007567546 @default.
- W3138932854 cites W2022684404 @default.
- W3138932854 cites W2027648557 @default.
- W3138932854 cites W2039546575 @default.
- W3138932854 cites W2040007132 @default.
- W3138932854 cites W2043281212 @default.
- W3138932854 cites W2046331573 @default.
- W3138932854 cites W2048370823 @default.
- W3138932854 cites W2057331906 @default.
- W3138932854 cites W2072685235 @default.
- W3138932854 cites W2073001881 @default.
- W3138932854 cites W2078895915 @default.
- W3138932854 cites W2081458347 @default.
- W3138932854 cites W2095445700 @default.
- W3138932854 cites W2126800238 @default.
- W3138932854 cites W2148965913 @default.
- W3138932854 cites W2157883119 @default.
- W3138932854 cites W2167018969 @default.
- W3138932854 cites W2168555104 @default.
- W3138932854 cites W2191880838 @default.
- W3138932854 cites W2550134996 @default.
- W3138932854 cites W2625995436 @default.
- W3138932854 cites W2809388168 @default.
- W3138932854 cites W2899507754 @default.
- W3138932854 cites W2963197286 @default.
- W3138932854 cites W2993551995 @default.
- W3138932854 cites W3004659881 @default.
- W3138932854 cites W3099042891 @default.
- W3138932854 cites W4241975315 @default.
- W3138932854 cites W4255975175 @default.
- W3138932854 doi "https://doi.org/10.1093/imanum/drac066" @default.
- W3138932854 hasPublicationYear "2022" @default.
- W3138932854 type Work @default.
- W3138932854 sameAs 3138932854 @default.
- W3138932854 citedByCount "2" @default.
- W3138932854 countsByYear W31389328542021 @default.
- W3138932854 countsByYear W31389328542023 @default.
- W3138932854 crossrefType "journal-article" @default.
- W3138932854 hasAuthorship W3138932854A5000567490 @default.
- W3138932854 hasAuthorship W3138932854A5031433208 @default.
- W3138932854 hasAuthorship W3138932854A5045876009 @default.
- W3138932854 hasAuthorship W3138932854A5086295112 @default.
- W3138932854 hasBestOaLocation W31389328542 @default.
- W3138932854 hasConcept C134306372 @default.
- W3138932854 hasConcept C162324750 @default.
- W3138932854 hasConcept C202444582 @default.
- W3138932854 hasConcept C2777303404 @default.
- W3138932854 hasConcept C2778112365 @default.
- W3138932854 hasConcept C28826006 @default.
- W3138932854 hasConcept C33676613 @default.
- W3138932854 hasConcept C33923547 @default.
- W3138932854 hasConcept C34388435 @default.
- W3138932854 hasConcept C50522688 @default.
- W3138932854 hasConcept C54355233 @default.
- W3138932854 hasConcept C86803240 @default.
- W3138932854 hasConcept C93779851 @default.
- W3138932854 hasConceptScore W3138932854C134306372 @default.
- W3138932854 hasConceptScore W3138932854C162324750 @default.
- W3138932854 hasConceptScore W3138932854C202444582 @default.
- W3138932854 hasConceptScore W3138932854C2777303404 @default.
- W3138932854 hasConceptScore W3138932854C2778112365 @default.
- W3138932854 hasConceptScore W3138932854C28826006 @default.
- W3138932854 hasConceptScore W3138932854C33676613 @default.
- W3138932854 hasConceptScore W3138932854C33923547 @default.
- W3138932854 hasConceptScore W3138932854C34388435 @default.
- W3138932854 hasConceptScore W3138932854C50522688 @default.
- W3138932854 hasConceptScore W3138932854C54355233 @default.
- W3138932854 hasConceptScore W3138932854C86803240 @default.
- W3138932854 hasConceptScore W3138932854C93779851 @default.
- W3138932854 hasIssue "5" @default.
- W3138932854 hasLocation W31389328541 @default.
- W3138932854 hasLocation W31389328542 @default.
- W3138932854 hasOpenAccess W3138932854 @default.
- W3138932854 hasPrimaryLocation W31389328541 @default.
- W3138932854 hasRelatedWork W1607154928 @default.
- W3138932854 hasRelatedWork W2018828049 @default.
- W3138932854 hasRelatedWork W2042726902 @default.
- W3138932854 hasRelatedWork W2136053165 @default.
- W3138932854 hasRelatedWork W2352053904 @default.
- W3138932854 hasRelatedWork W2371360614 @default.
- W3138932854 hasRelatedWork W2383655639 @default.
- W3138932854 hasRelatedWork W3102632868 @default.
- W3138932854 hasRelatedWork W3102909640 @default.
- W3138932854 hasRelatedWork W2725495363 @default.