Matches in SemOpenAlex for { <https://semopenalex.org/work/W3138961463> ?p ?o ?g. }
- W3138961463 abstract "Inundation maps are a fundamental tool for coastal risk management and in particular for designing evacuation maps and evacuation planning. These in turn are a necessary component of the tsunami warning systems’ last-mile. In Italy inundation maps are informed by a probabilistic tsunami hazard model. Based on a given level of acceptable risk, Italian authorities in charge for this task recommended to consider, as design hazard intensity, the average return period of 2500 years and the 84th percentile of the hazard model uncertainty. An available, regional-scale tsunami hazard model was used that covers the entire Italian coastline. Safety factors based on analysis of run-up variability and an empirical coastal dissipation law on a digital terrain model (DTM) were applied to convert the regional hazard into the design run-up and the corresponding evacuation maps with a GIS-based approach. Since the regional hazard cannot fully capture the local-scale variability, this simplified and conservative approach is considered a viable and feasible practice to inform local coastal risk management in the absence of high-resolution hazard models. The present work is a first attempt to quantify the uncertainty stemming from such procedure. We compare the GIS-based inundation maps informed by a regional model with those obtained from a local high-resolution hazard model. Two locations on the coast of eastern Sicily were considered, and the local hazard was addressed with the same seismic model as the regional one, but using a higher-resolution DTM and massive numerical inundation calculations with the GPU-based Tsunami-HySEA nonlinear shallow water code. This study shows that the GIS-based inundation maps used for planning deal conservatively with potential hazard underestimation at the local scale, stemming from typically unmodeled uncertainties in the numerical source and tsunami evolution models. The GIS-based maps used for planning fall within the estimated “error-bar” due to such uncertainties. The analysis also demonstrates the need to develop local assessments to serve very specific risk mitigation actions to reduce the uncertainty. More in general, the presented case-studies highlight the importance to explore ways of dealing with uncertainty hidden within the high-resolution numerical inundation models, e.g., related to the crude parameterization of the bottom friction, or the inaccuracy of the DTM." @default.
- W3138961463 created "2021-03-29" @default.
- W3138961463 creator A5005038030 @default.
- W3138961463 creator A5005054247 @default.
- W3138961463 creator A5017070791 @default.
- W3138961463 creator A5018299071 @default.
- W3138961463 creator A5019797457 @default.
- W3138961463 creator A5024050371 @default.
- W3138961463 creator A5026779676 @default.
- W3138961463 creator A5030193599 @default.
- W3138961463 creator A5033308925 @default.
- W3138961463 creator A5037409601 @default.
- W3138961463 creator A5037928452 @default.
- W3138961463 creator A5045999747 @default.
- W3138961463 creator A5056233839 @default.
- W3138961463 creator A5060145682 @default.
- W3138961463 creator A5062452313 @default.
- W3138961463 creator A5067377532 @default.
- W3138961463 creator A5079141485 @default.
- W3138961463 creator A5080128801 @default.
- W3138961463 creator A5085303465 @default.
- W3138961463 creator A5085456798 @default.
- W3138961463 creator A5085591089 @default.
- W3138961463 creator A5088573224 @default.
- W3138961463 date "2021-03-11" @default.
- W3138961463 modified "2023-10-18" @default.
- W3138961463 title "Testing Tsunami Inundation Maps for Evacuation Planning in Italy" @default.
- W3138961463 cites W1556664527 @default.
- W3138961463 cites W1963625637 @default.
- W3138961463 cites W1990720724 @default.
- W3138961463 cites W2000815992 @default.
- W3138961463 cites W2014337990 @default.
- W3138961463 cites W2015400460 @default.
- W3138961463 cites W2015445765 @default.
- W3138961463 cites W2025321708 @default.
- W3138961463 cites W2026188609 @default.
- W3138961463 cites W2028062753 @default.
- W3138961463 cites W2045187965 @default.
- W3138961463 cites W2063861957 @default.
- W3138961463 cites W2073636678 @default.
- W3138961463 cites W2095497144 @default.
- W3138961463 cites W2096980175 @default.
- W3138961463 cites W2096984527 @default.
- W3138961463 cites W2118528786 @default.
- W3138961463 cites W2119951392 @default.
- W3138961463 cites W2130014760 @default.
- W3138961463 cites W2149567117 @default.
- W3138961463 cites W2185177222 @default.
- W3138961463 cites W2274181937 @default.
- W3138961463 cites W2308408442 @default.
- W3138961463 cites W2312224262 @default.
- W3138961463 cites W2318714337 @default.
- W3138961463 cites W2400978300 @default.
- W3138961463 cites W2403630702 @default.
- W3138961463 cites W2410766306 @default.
- W3138961463 cites W2511833974 @default.
- W3138961463 cites W2589463074 @default.
- W3138961463 cites W2694160080 @default.
- W3138961463 cites W2770527983 @default.
- W3138961463 cites W2884288549 @default.
- W3138961463 cites W2912131067 @default.
- W3138961463 cites W2940752253 @default.
- W3138961463 cites W2953421419 @default.
- W3138961463 cites W2953979085 @default.
- W3138961463 cites W2971928856 @default.
- W3138961463 cites W3002439568 @default.
- W3138961463 cites W3007819879 @default.
- W3138961463 cites W3030248693 @default.
- W3138961463 cites W3033665448 @default.
- W3138961463 cites W3034501323 @default.
- W3138961463 cites W3082062405 @default.
- W3138961463 cites W3090436835 @default.
- W3138961463 cites W3094081803 @default.
- W3138961463 cites W3112850893 @default.
- W3138961463 cites W3135340103 @default.
- W3138961463 cites W66007079 @default.
- W3138961463 doi "https://doi.org/10.3389/feart.2021.628061" @default.
- W3138961463 hasPublicationYear "2021" @default.
- W3138961463 type Work @default.
- W3138961463 sameAs 3138961463 @default.
- W3138961463 citedByCount "13" @default.
- W3138961463 countsByYear W31389614632021 @default.
- W3138961463 countsByYear W31389614632022 @default.
- W3138961463 countsByYear W31389614632023 @default.
- W3138961463 crossrefType "journal-article" @default.
- W3138961463 hasAuthorship W3138961463A5005038030 @default.
- W3138961463 hasAuthorship W3138961463A5005054247 @default.
- W3138961463 hasAuthorship W3138961463A5017070791 @default.
- W3138961463 hasAuthorship W3138961463A5018299071 @default.
- W3138961463 hasAuthorship W3138961463A5019797457 @default.
- W3138961463 hasAuthorship W3138961463A5024050371 @default.
- W3138961463 hasAuthorship W3138961463A5026779676 @default.
- W3138961463 hasAuthorship W3138961463A5030193599 @default.
- W3138961463 hasAuthorship W3138961463A5033308925 @default.
- W3138961463 hasAuthorship W3138961463A5037409601 @default.
- W3138961463 hasAuthorship W3138961463A5037928452 @default.
- W3138961463 hasAuthorship W3138961463A5045999747 @default.
- W3138961463 hasAuthorship W3138961463A5056233839 @default.
- W3138961463 hasAuthorship W3138961463A5060145682 @default.
- W3138961463 hasAuthorship W3138961463A5062452313 @default.